Анионы (отрицательные ионы) что такое анионы? как анионы влияют на организм человека? Что такое анионы

АНИОН — это отрицательно заряженная частица кислорода. Анион- это не искусственно выращенная частица в лабораторных условиях.

Анион, как ни странно присутствует в воздухе,и здоровье на прямую зависит от их количества. Анионы могут аккумулировать и нейтра лизовать пыль, уничтожать вирусы с положительно заряженными электронами, проникать в клетки бактерий и уничтожать их, пред отвращая таким образом негативные последствия для человеческо го организма. При ионизации человека отмечаются улучшения в ра боте всех органов и систем организма:

Сердечно сосудистой системы, нормализация артериального давления, центральной нервной системы, желудочно-кишечного тракта, мочеполовой системы и отмечается общее омоложение организма.

Особо большое скопление анионов присутствует в морском и горном воздухе. Наверняка Вы наблюдали, что возле моря Вам дышится легче и улучшается самочувствие. А про долгожителей горных поселений ходят легенды.

Каким образом анионы присутствуют в женских гигиенических прокладках? – спросите Вы?

В природе есть такой минерал — ТУРМАЛИН.

А это уже отшлифованные камни


Турмалин при определённых условиях (1.трение, 2.влага, 3.темпера тура) излучает анионы. Все три условия присущи человеческому ор ганизму.

Как лекари, турмалины положительно влияют на нервную систему, сон, эндокринную и иммунную системы. Уникальный минерал тур малин хорошо лечит кровеносную систему, воспроизводительную функцию организма.

Минерал нейтрализует отрицательные эмоции. Из всех зелёных камней турмалин имеет самые сильные омолаживающие качества.

Как камень нижних энергий прекрасно подходит как средство от половых расстройств, бессилия и пр. У мужчин укрепляет потенцию. Для низменных людей он может оказаться афродозиаком, сделав сексуальную энергию неуправляемой.

Очень любопытно, что турмалин считается сильным лечебным средством при онкологических заболеваниях. По некоторым данным, турмалины могут быть индикаторами радиоактивности, а кровь

онкологических больных обнаруживает очень специфическое излуче ние. При лечении турмалин кладут между чакрами для проводки энергии от одной чакры к другой. Особенно хорошо применять его с родохрозитом и малахитом на солнечное сплетение для объединения энергий.

Из всех существующих на земле минералов только турмалин несёт в себе постоянный электрический заряд, за что его и называют крис таллическим магнитом.

При нагревании турмалин создаёт низкочастотное магнитное поле, излучает анионы, которые действуют на человеческий организм следующим образом:

· Усиливается клеточный метаболизм, улучшается обмен веществ;

· Улучшается местный кровоток;

· Восстанавливается работа лимфатической системы;

· Восстанавливаются эндокринная и гормональная системы;

· Улучшается питание в органах и тканях;

· Укрепляется иммунитет;

· Содействуют уравновешенности вегетативной системы(это система возбуждения и торможения психики);

· Обеспечениие организма живительной энергией;

· Улучшается качество крови, стимулируются кровообращение и разжижение крови,так что она поступает в тончайшие капилляры, придавая организму жизненных сил. Очищает сосуды, заряжает плазму.

· Применяются при болезнях печени;

· Улучшают сон;

· Восстанавливают нервы после стрессовых ситуаций;

· Улучшают цвет лица;

· Укрепляют потенцию и половую функцию организма;

· Улучшают зрение и память;

· Облегчают головные боли, снимают головокружение;

· Устраняют неприятные запахи, имеют антибактериальные свойства.

В проточной воде можно снять лишний заряд с камня. Для того, чтобы снова его зарядить – нужно немного подержать на солнце. Являясь природным минералом, турмалин не даёт побочных явлений.

Компания «ВИНАЛАЙТ», используя инновационные нанотехнологии, нашла способ обработки и измельчение турмалина, переплетая с волокнами хлопка. Таким образом создан анионовый вкладыш или чип (не электронный), который помещён в женскую гинекологическую прокладку «Love Moon».

Количество концентрации анионов в 1 см 3:


Возле водопадов 7000 — 8000 анионов


Возле моря 3000 — 6000 анионов


В горах 3000 — 5000 анионов


В лесах 700 — 1500 анионов


В городах 100 -200 анионов


В квартирах 25 -75 анионов


В анионовом вкладыше ~ 5800 анионов на 1 см3.

Человек, так же как и всякое другое живое существо, не может жить без анионов. А между тем, знаете ли Вы, что такое «анион»?В обычных условиях молекулы и атомы воздуха нейтральны. Однако при ионизации, которая может происходить посредством обычного излучения, ультрафиолетовой радиации, микроволновой радиации или же посредством простого удара молнии, молекулы воздуха теряют часть вращающихся вокруг атомного ядра отрицательно заряженных электронов, которые в дальнейшем присоединяются к нейтральным молекулам, придавая им отрицательный заряд. Такие молекулы мы и называем анионами.

У анионов нет цвета и запаха, а наличие отрицательных электронов на орбите позволяет им притягивать из воздуха различные микровещества. Анионы также удаляют из воздуха пыль и убивают микробы. Связь «анион-воздух» аналогична связи «витамин-пища». Именно поэтому анионы также называют «воздушными витаминами», «элементом долголетия» и «очистителем воздуха». Хотя полезные свойства анионов оставались долгое время в тени, они крайне важны для человеческого здоровья. Мы не можем позволить себе пренебрегать их целебными свойствами. Так, анионы могут аккумулировать и нейтрализовать пыль, уничтожать вирусы с положительно заряженными электронами, проникать в клетки микробов и уничтожать их, предотвращая, таким образом, негативные последствия для человеческого организма. Чем больше в воздухе анионов, тем меньше в нем микробов (когда же концентрация анионов достигает определенного уровня, то содержание микробов и вовсе сводится к нулю). Здоровье людей напрямую зависит от содержания анионов в воздухе. Если в попадающем в человеческое тело воздухе содержание анионов слишком низкое или, наоборот, слишком высокое, то человек начинает судорожно дышать, может почувствовать усталость, головокружение, головную боль или даже впасть в депрессию.

Все это поддается лечению при условии, что содержание анионов в поступающем в легкие воздухе составляет 1200 анионов на 1 кубический сантиметр. Если содержание анионов внутри жилых помещений повысить до 1500 анионов на 1 кубический сантиметр, то Ваше самочувствие сразу улучшится; Вы начнете работать с удвоенной энергией, повышая тем самым производительность труда.

Таким образом, анионы – это незаменимый помощник в укреплении человеческого здоровья и продлении жизни. Международная Организация Здравоохранения установила, что минимальное содержание анионов в свежем воздухе должно составлять 1000 анионов на 1 кубический сантиметр. При определенных условиях состояния окружающей среды (например, в горных областях) люди за всю жизнь могут ни разу не испытать воспаление внутренних органов. Как правило, такие люди живут долго и остаются здоровыми всю жизнь, что является результатом достаточного содержания анионов в воздухе.

Классификация катионов и анионов.

Методы анализа.

Аналитическая химия – наука об определении химического состава вещества.

Аналитическая химия и ее методы широко применяются на предприятиях общественного питания и пищевой промышленности для осуществления контроля качества сырья, полуфабрикатов, готовой продукции; определения сроков реализации и условий хранения продукции.

В аналитической химии различают количественный и качественный анализ. Задача количественного анализа - определение относительного количества элементов в соединениях или химических соединений в смесях; задача качественного анализа - обнаружить присутствие элементов в соединениях или химических соединений в смесях.

История развития аналитической химии.

Изначально с помощью качественного анализа определяли свойства некоторых минералов. Количественный анализ применялся в пробирном деле (определение благородных металлов) - Древняя Греция, Египет. В 9-10веке методы пробирного дела применялись для определения благородных металлов в Киевской Руси.

Аналитическая химия как наука начинает развиваться с середины 17 века.

Впервые основы качественного анализа изложил английский ученый Р.Бойль, он же ввел термин «химический анализ». Р.Бойль считается родоначальником научной аналитической химии.

Законы количественного анализа изложил Ломоносов в середине 17 века. Ломоносов впервые начал применять взвешивание исходных веществ и продуктов реакции.

К середине ХIХ века оформились титриметрические и гравиметрические методы анализа, методы газового анализа.

Первый учебник по аналитической химии появился в России в 1871 г. Автор этого учебника – русский химик Н.А. Меншуткин.

Во второй половине ХХ века появилось много новых методов анализа: рентгеновские, масс-спектральные и т.д.

Классификация методов анализа, применяемых в аналитической химии.

Аналитическая химия включает два основных раздела: количественный анализ и качественный анализ.

Методы качественного анализа:

Ø Химические

Ø Физико-химические

Ø Физические

Химический анализ:

Ø «сухим» путем

Ø «мокрым» путем

«Сухой» путь – химические реакции, которые идут при накаливании, сплавлении, окрашивании пламени.

Пример : окрашивание пламени катионами металлов (натрий – желтый, калий – розово-фиолетовый, кальций – оранжево-красный, медь – зеленый и т.д.), которые образуются при электролитической диссоциации солей:

NaCl → Na + + Cl -

K 2 CO 3 → 2K + + CO 3 2-

«Мокрый» путь – химические реакции в растворах электролитов.

Также в качественном анализе в зависимости от количества исследуемого вещества, объема раствора, техники выполнения различают:

1) макрометод: сравнительно большие навески (0,1 г и более) или большие объемы растворов (10 мл и более) исследуемого вещества. Этот метод наиболее удобен в определении.

2) микрометод: навески от 10 до 50 мг и объемы раствора до нескольких мл.

3) полумикрометод: навески 1-10 мг и объемы раствора около 0,1 – 1 мл.

Микрометод и полумикрометод обладают двумя несомненными достоинствами:

1. Большая скорость выполнения анализа

2. Небольшое требуемое количество анализируемого вещества.

Физико-химические методы анализа:

Ø колориметрические (сравнение окраски двух растворов)

Ø нефелометрические (помутнение исследуемого раствора от действия каких-то реагентов)

Ø электрохимические (момент окончания реакции определяют по изменению электропроводности раствора, потенциала электродов в исследуемом растворе)

Ø рефрактометрические (определяют показатель преломления)

Физические методы анализа:

Ø спектральный анализ (изучение спектров излучения или поглощения)

Ø люминесцентный (изучение характера свечения вещества под действием УФ)

Ø масс-спектрометрический

Ø рефрактометрический

Для обнаружения ионов в растворах в аналитической химии используют аналитические реакции.

Аналитическая реакция – химическое превращение, при котором исследуемое вещество переводят в новое соединение с характерным признаком.

Признаки аналитической реакции:

Ø Выпадение осадка

Ø Растворение осадка

Ø Изменение цвета

Ø Выделение газообразного вещества

Условия аналитической реакции:

Ø Быстрое протекание

Ø Специфичность

Ø Чувствительность

Чувствительная реакция – реакция, при помощи которой можно обнаружить наименьшее количество вещества из наименьшего количества раствора.

Чувствительная реакция характеризуется:

1. Открываемым минимумом (наименьшее количество вещества, которое может быть обнаружено данной реакцией)

2. Минимальной концентрацией (отношение массы определяемого вещества к массе или объему растворителя).

Специфичной называется реакция, при помощи которой можно открыть ион в присутствии других ионов по специфичному изменению цвета, образованию характерного осадка, выделению газа и т.д.

Пример: ион бария обнаруживают хроматом калия К 2 СгО 4 (выпадает ярко-желтый осадок).

На специфичных реакциях основан анализ, называемый дробным . С помощью дробного анализа можно открывать ионы в любой последовательности, используя специфичные реакции.

Однако специфичных реакций известно мало, чаще реактивы взаимодействуют с несколькими ионами. Такие реакции и реактивы называются общими . В этом случае применяют систематический анализ. Систематический анализ - определенная последовательность обнаружения ионов, находящихся в смеси. Ионы, составляющие смесь, разделяют на отдельные группы, из этих групп каждый ион выделяют в строго определенной последовательности, а затем открывают этот ион наиболее характерной реакцией. Реакции, характерные для одного иона, называются частными .

Классификация катионов и анионов.

В основу классификации ионов в аналитической химии положено различие в растворимости образуемых ими солей и гидроксидов.

Аналитическая группа – группа катионов или анионов, которая с каким-то одним реактивом дает сходные аналитические реакции.

Классификации катионов:

Ø сульфидная, или сероводородная,– является классической, разработал Меншуткин Н.А.;

Ø кислотно-основная и т.д.

Сульфидная классификации катионов основана на отношении катионов к сульфид-иону:

1) Катионы, осаждаемые сульфид-ионом

2) Катионы, не осаждаемые сульфид-ионом.

Каждая группа имеет свойгрупповой реактив – реактив, используемый для открытия одной группы ионов и образующий осадок с ионами данной группы (Ва 2+ + SО 4 2- → ВаSО 4 ↓)

Определение катионов проводят систематическим анализом .

Анионы - это составные части двойных, комбинированных, средних, кислых, основных солей. В качественном анализе каждый из них можно определить с помощью определенного реактива. Рассмотрим качественные реакции на анионы, используемые в неорганической химии.

Особенности анализа

Он является одним из важнейших вариантов идентификации веществ, распространенных в неорганической химии. Существует подразделение анализа на два компонента: качественный, количественный.

Все качественные реакции на анионы подразумевают идентификацию вещества, установление наличия в нем определенных примесей.

Количественный анализ устанавливает четкое содержание примесей и базового вещества.

Специфика качественного обнаружения анионов

Далеко не все взаимодействия можно использовать в качественном анализе. Характерной считается реакция, которая приводит к изменению окраски раствора, выпадению осадка, его растворению, выделению газообразного вещества.

Группы анионов определяют путем селективной реакции, благодаря которой можно обнаружить только определенные анионы в составе смеси.

Чувствительность - это наименьшая концентрация раствора, при которой определяемый анион можно обнаружить без его предварительной обработки.

Групповые реакции

Существуют такие химические вещества, которые способны при взаимодействии с разными анионами давать сходные результаты. Благодаря применению группового реактива можно выделять различные группы анионов, проводя их осаждение.

При проведении химического анализа неорганических веществ, в основном, проводят исследование водных растворов, в которых соли присутствуют в диссоциированном виде.

Именно поэтому анионы солей определяют путем их открытия в растворе вещества.

Аналитические группы

В кислотно-основном методе принято выделять три аналитические группы анионов.

Проанализируем, какие анионы можно определять, пользуясь определенными реактивами.

Сульфаты

Для их выявления в смеси солей в качественном анализе применяют растворимые соли бария. Учитывая, что сульфат-анионы - это SO4, краткое ионное уравнение происходящей реакции имеет вид:

Ba 2 + + (SO 4) 2- = BaSO4

Полученный в результате взаимодействия сульфат бария имеет белый цвет, является нерастворимым веществом.

Галогениды

При определении анионов хлора в солях в качестве реактива используют растворимые соли серебра, так как именно катион этого благородного металла дает нерастворимый белый осадок, поэтому так определяют хлорид-анионы. Это далеко не полный перечень качественных взаимодействий, используемых в аналитической химии.

Помимо хлоридов, соли серебра используют также для выявления наличия в смеси йодидов, бромидов. Каждая из солей серебра, образующая соединение с галогенидом, имеет определенную окраску.

Например, AgI имеет желтый цвет.

Качественные реакции на анионы 1 аналитической группы

Сначала рассмотрим, какие в нее входят анионы. Это карбонаты, сульфаты, фосфаты.

Самой распространенной в аналитической химии, считается реакция на определение сульфат-ионов.

Для ее проведения можно воспользоваться растворами сульфата калия, хлорида бария. При смешивании между собой этих соединений образуется белый осадок сульфата бария.

В аналитической химии обязательным условием является написание молекулярных и ионных уравнений тех процессов, которые были проведены для выявления анионов определенной группы.

Если записывать полное и сокращенное ионное уравнение для данного процесса, можно подтвердить образование нерастворимой соли BaSO4 (сульфата бария).

При выявлении карбонат-иона в смеси солей используют качественную реакцию с неорганическими кислотами, сопровождающуюся выделением газообразного соединения - углекислого газа. Кроме того, при выявлении карбоната в аналитической химии также используется реакция с хлоридом бария. В результате ионного обмена выпадает белый осадок карбоната бария.

Сокращенное ионное уравнение процесса описывается схемой.

Хлорид бария осаждает карбонат-ионы в виде белого осадка, что используется в качественном анализе анионов первой аналитической группы. Иные катионы не дают такого результата, поэтому не подходят для определения.

При взаимодействии карбоната с кислотами краткое ионное уравнении имеет следующий вид:

2H + +CO 3 - =CO 2 +H 2 O

При выявлении фосфат-ионов в смеси также применяется растворимая соль бария. Смешивание раствора фосфата натрия с хлоридом бария приводит к образованию нерастворимого фосфата бария.

Таким образом, можно сделать вывод об универсальности хлорида бария, возможности его применения для определения анионов первой аналитической группы.

Качественные реакции на анионы второй аналитической группы

Хлорид-анионы можно обнаружить при взаимодействии с раствором нитрата серебра. В результате ионного обмена образуется творожистый белый осадок хлорида серебра (1).

Бромид этого металла имеет желтоватый цвет, а йодид отличается насыщенной желтой окраской.

Молекулярное взаимодействие хлорида натрия с нитратом серебра имеет следующий вид:

NaCl + AgNO 3 =AgCl +NaNO 3

Среди специфических реактивов, которые можно использовать при определении в смеси иодид-ионов, выделим катионы меди.

KI + CuSO 4 = I 2 + K 2 SO 4 + CuI

Данный окислительно-восстановительный процесс характеризуется образованием свободного йода, что и применяется в качественном анализе.

Силикат-ионы

Для обнаружения этих ионов используют концентрированные минеральные кислоты. Например, при добавлении к силикату натрия концентрированной соляной кислоты образуется осадок кремниевой кислоты, имеющий гелеобразный вид.

В молекулярном виде данный процесс:

Na 2 SiO 3 + 2HCl = NaCl+ H 2 SiO 3

Гидролиз

В аналитической химии гидролиз по аниону является одним из способов определения реакции среды в растворах солей. Для того чтобы правильно определить вариант протекающего гидролиза, необходимо выяснить, из какой кислоты и основания получена соль.

Например, сульфид алюминия образован нерастворимым гидроксидом алюминия и слабой сероводородной кислотой. В водном растворе этой соли происходит гидролиз по аниону и по катиону, поэтому среда нейтральна. Ни один из индикаторов не будет менять своей окраски, следовательно, путем гидролиза сложно будет провести определение состава данного соединения.

Заключение

Качественные реакции, которые используют в аналитической химии для определения анионов, позволяют получать в виде осадков определенные соли. В зависимости от того, анионы какой аналитической группы необходимо выявить, для эксперимента подбирается определенный групповой реактив.

Именно по этой методике проводят определение качества питьевой воды, выявляя, не превышает ли количественное содержание анионов хлора, сульфата, карбоната тех предельных допустимых концентраций, которые установлены санитарно-гигиеническими требованиями.

В условиях школьной лаборатории эксперименты, касающиеся определения анионов, являются одним из вариантов заданий исследовательского характера на практической работе. В ходе эксперимента школьники не только анализируют цвета получаемых осадков, но и составляют уравнения реакций.

Кроме того, элементы качественного анализа предлагаются выпускникам в итоговых тестах по химии, позволяют определить уровень владения будущими химиками и инженерами молекулярными, полными и сокращенными ионными уравнениями.

АНИОНЫ (отрицательные ионы) Что такое анионы? Как анионы влияют на организм человека?

Что такое анионы?

Молекулы и атомы воздуха, в обычных условиях, нейтральны. Но при ионизации воздуха, которая может произойти посредством обычного излучения, микроволновой радиации, ультрафиолетовой радиации иногда просто посредством простого удара молнии. Воздух разряжается - молекулы кислорода теряют часть отрицательно заряженных электронов, вращающихся вокруг атомного ядра, которые в дальнейшем находят и присоединяются к любым нейтральным молекулам, придавая им отрицательный заряд. Такие отрицательно заряженные молекулы называют анионами. Человек не может существовать без анионов как и любое другое живое существо.

Аромат свежего воздуха - наличие анионов мы чувствуем в воздухе живой природы: высоко в горах, у моря, сразу после дождя - в это время хочется дышать полной грудью, вдыхать эту чистоту и свежесть воздуха. Анионы (отрицательно заряженные ионы) воздуха называют воздушными витаминами. Анионы лечат заболевания бронхов, легочной системы человека, являются мощным средством профилактики любых заболеваний, повышают иммунитет человеческого организма. Отрицательные ионы (Анионы) способствуют очищению воздуха от бактерий, микробов, болезнетворной микрофлоры и пыли, доводя число бактерий и пылинок до минимума, а иногда и до нуля. Анионы хорошо оказывают длительное очищающее обеззараживающее действие на микрофлору окружающего воздуха

Здоровье человека напрямую зависит от количественного содержания анионов в окружающем воздухе. Если в окружающем пространстве в воздухе, попадающем в человеческий организм, анионов содержится слишком мало, то человек начинает дышать судорожно, может почувствовать усталость, начинающиеся головокружение и головную боль или даже впасть в депрессию. Все эти состояния поддаются лечению, если содержание анионов в поступающем в легкие воздухе составляет минимум 1200 анионов на 1 кубический сантиметр. Если увеличить содержание анионов внутри жилых помещений до 1500-1600 анионов на 1 кубический сантиметр, то самочувствие живущих или работающих там людей резко улучшится; Вы начнете чувствовать себя очень хорошо, работать с удвоенной энергией, повышая тем самым свою производительность и качество труда.

При непосредственном контакте анионов с кожей, благодаря высокой проникающей способности отрицательных ионов, у человека в организме происходят сложные биохимические реакции и процессы, которые способствуют:

общему укреплению человеческого организма, иммунитета и поддержанию энергетического статуса организма в целом

улучшению кровоснабжения всех органов, улучшение мозговой деятельности, профилактике кислородной недостаточности головного мозга,

Анионы улучшают работу сердечной мышцы, тканей почек и печени

анионы способствуют усилению микроциркуляции крови в сосудах, повышению эластичности тканей

отрицательно заряженные частицы (Анионы) предотвращают старения организма

анионы способствуют активизации противоотечного и иммуномодулирующего действия

анионы помогают против РАКа, опухолей, повышают собственную противоопухолевую защиту организма

при увеличении анионов в воздухе улучшается проводимости нервных импульсов

Таким образом следует:

Анионы (отрицательные ионы) - это незаменимый помощник в укреплении человеческого здоровья и продления его жизни

Катионами называют положительно заряженные ионы.

Анионами называют отрицательно заряженные ионы.

В процессе развития химии понятия «кислота» и «основание» претерпели серьёзные изменения. С точки зрения теории электролитической диссоциации кислотами называют электролиты, при диссоциации которых образуются ионы водорода H + , а основаниями - электролиты, при диссоциации которых образуются гидроксид-ионы OH – . Эти определения в химической литературе известны как определения кислот и оснований по Аррениусу.

В общем виде диссоциацию кислот представляют так:

где A – - кислотный остаток.

Такие свойства кислот, как взаимодействие с металлами, основаниями, основными и амфотерными оксидами, способность изменять окраску индикаторов, кислый вкус и т. д., обусловлены наличием в растворах кислот ионов H + . Число катионов водорода, которые образуются при диссоциации кислоты, называют её основностью. Так, например, HCl является одноосновной кислотой, H 2 SO 4 - двухосновной, а H 3 PO 4 - трёхосновной.

Многоосновные кислоты диссоциируют ступенчато, например:

От образовавшегося на первой ступени кислотного остатка H 2 PO 4 – последующий отрыв иона H + происходит гораздо труднее из-за наличия отрицательного заряда на анионе, поэтому вторая ступень диссоциации протекает гораздо труднее, чем первая. На третьей ступени протон должен отщепляться от аниона HPO 4 2– , поэтому третья ступень протекает лишь на 0,001%.

В общем виде диссоциацию основания можно представить так:

где M + - некий катион.

Такие свойства оснований, как взаимодействие с кислотами, кислотными оксидами, амфотерными гидроксидами и способность изменять окраску индикаторов, обусловлены наличием в растворах OH – -ионов.

Число гидроксильных групп, которые образуются при диссоциации основания, называют его кислотностью. Например, NaOH - однокислотное основание, Ba(OH) 2 - двухкислотное и т. д.

Многокислотные основания диссоциируют ступенчато, например:

Большинство оснований в воде растворимо мало. Растворимые в воде основания называют щелочами .

Прочность связи М-ОН возрастает с увеличением заряда иона металла и увеличением его радиуса. Поэтому сила оснований, образуемых элементами в пределах одного и того же периода, уменьшается с возрастанием порядкового номера. Если один и тот же элемент образует несколько оснований, то степень диссоциации уменьшается с увеличением степени окисления металла. Поэтому, например, у Fe(OH) 2 степень основной диссоциации больше, чем у Fe(OH) 3 .

Электролиты, при диссоциации которых одновременно могут образовываться катионы водорода и гидроксид-ионы, называют амфотерными . К ним относят воду, гидроксиды цинка, хрома и некоторые другие вещества. Их полный перечень приведён в уроке 6, а их свойства рассмотрены в уроке 16.

Солями называют электролиты, при диссоциации которых образуются катионы металлов (а также катион аммония NH 4 +) и анионы кислотных остатков.

Химические свойства солей будут описаны в уроке 18.

Тренировочные задания

1. К электролитам средней силы относится

1) H 3 PO 4
2) H 2 SO 4
3) Na 2 SO 4
4) Na 3 PO 4

2. К сильным электролитам относится

1) KNO 3
2) BaSO 4
4) H 3 PO 4
3) H 2 S

3. Сульфат-ион в значительном количестве образуется при диссоциации в водном растворе вещества, формула которого

1) BaSO 4
2) PbSO 4
3) SrSO 4
4) K 2 SO 4

4. При разбавлении раствора электролита степень диссоциации

1) остается неизменной
2) понижается
3) повышается

5. Степень диссоциации при нагревании раствора слабого электролита

1) остается неизменной
2) понижается
3) повышается
4) с начала повышается, потом понижается

6. Только сильные электролиты перечислены в ряду:

1) H 3 PO 4 , K 2 SO 4 , KOH
2) NaOH, HNO 3 , Ba(NO 3) 2
3) K 3 PO 4 , HNO 2 , Ca(OH) 2
4) Na 2 SiO 3 , BaSO 4 , KCl

7. Водные растворы глюкозы и сульфата калия соответственно являются:

1) с ильным и слабым электролитом
2) неэлектролитом и сильным электролитом
3) слабым и сильным электролитом
4) слабым электролитом и неэлектролитом

8. Степень диссоциации электролитов средней силы

1) больше 0,6
2) больше 0,3
3) лежит в пределах 0,03-0,3
4) менее 0,03

9. Степень диссоциации сильных электролитов

1) больше 0,6
2) больше 0,3
3) лежит в пределах 0,03-0,3
4) менее 0,03

10. Степень диссоциации слабых электролитов

1) больше 0,6
2) больше 0,3
3) лежит в пределах 0,03-0,3
4) менее 0,03

11. Электролитами являются оба вещества:

1) фосфорная кислота и глюкоза
2) хлорид натрия и сульфат натрия
3) фруктоза и хлорид калия
4) ацетон и сульфат натрия

12. В водном растворе фосфорной кислоты H 3 PO 4 наименьшая концентрация частиц

1) H 3 PO 4
2) H 2 PO 4 –
3) HPO 4 2–
4) PO 4 3–

13. Электролиты расположены в порядке увеличения степени диссоциации в ряду

1) HNO 2 , HNO 3 , H 2 SO 3
2) H 3 PO 4 , H 2 SO 4 , HNO 2
3) HCl, HBr, H 2 O

14. Электролиты расположены в порядке уменьшения степени диссоциации в ряду

1) HNO 2 , H 3 PO 4 , H 2 SO 3
2) HNO 3 , H 2 SO 4 , HCl
3) HCl, H 3 PO 4 , H 2 O
4) CH 3 COOH, H 3 PO 4 , Na 2 SO 4

15. Практически необратимо диссоциирует в водном растворе

1) уксусная кислота
2) бромоводородная кислота
3) фосфорная кислота
4) гидроксид кальция

16. Электролитом, более сильным по сравнению с азотистой кислотой, будет

1) уксусная кислота
2) сернистая кислота
3) фосфорная кислота
4) гидроксид натрия

17. Ступенчатая диссоциация характерна для

1) фосфорной кислоты
2) соляной кислоты
3) гидроксида натрия
4) нитрата натрия

18. Только слабые электролиты представлены в ряду

1) сульфат натрия и азотная кислота
2) уксусная кислота, сероводородная кислота
3) сульфат натрия, глюкоза
4) хлорид натрия, ацетон

19. Каждое из двух веществ является сильным электролитом

1) нитрат кальция, фосфат натрия
2) азотная кислота, азотистая кислота
3) гидроксид бария, сернистая кислота
4) уксусная кислота, фосфат калия

20. Оба вещества являются электролитами средней силы

1) гидроксид натрия, хлорид калия
2) фосфорная кислота, азотистая кислота
3) хлорид натрия, уксусная кислота
4) глюкоза, ацетат калия