Дыхание микробов - микробиология с техникой микробиологических исследований. Физиология микроорганизмов

Дыхание(биологическое окисление) у бактерий тесно связано с питанием и дает энергию для осуществления функций клетки. При этом в ходе биохимических реакций образуется АТФ - универсальный аккумулятор и переносчик химической энергии у живых существ. Различают аэробный и анаэробный типы дыхания. Микробы, окисляющие органические соединения с использованием кислорода воздуха (в качестве акцептора ионов Н+), называют аэробами. В отличие от них, анаэробы получают энергию в ходе окислительно-восстановительных реакций, при которых акцептором Н+ является не кислород, а нитрат или сульфат (в бескислородных условиях). Многие микробы, имея полный набор дыхательных ферментов, могут существовать как в кислородной, так и бескислородной среде - это факультативные (необязательные) анаэробы с нитратным типом дыхания. Облигагные (обязательные) анаэробы существуют лишь в строго анаэробных условиях, т.к. в аэробных условиях образуются токсичные перекиси (Н2О2 и др.), которые не разрушаются из-за отсутствия у облигатных анаэробов фермента каталазы, для них характерен сульфатный тип дыхания. Необходимыми условиями для культивирования микробов являются:

  • 1) наличие подходящей по составу питательной среды;
  • 2) оптимальной (по содержанию О2 и др.) атмосферы над питательной средой;
  • 3) оптимальной температуры.

Выделение чистой культуры анаэробов занимает 4 дня и отличается тем, что исследование ведут в анаэробных условиях на специальных средах и материал предварительно подращивают сутки в среде для накопления анаэробов. Методы культивирования анаэробов основаны на удалении кислорода из питательной среды и из атмосферы (используют механическое и физическое удаление или замещение, химическое или биологическое связывание О2)

  • - перед посевом среды регенерируют (кипятят и быстро охлаждают);
  • - делают посевы в высокие столбики среды в пробирках;
  • - наслаивают поверх питательной среды вазелиновое масло;
  • - культивируют в анаэроостате, из которого откачан воздух и замещён инертным газом или бескислородной смесью (азот, водород, углекислый газ);
  • - культивируют в эксикаторе, на дно которого помещены химические поглотители кислорода (щелочной раствор пирогаллола и др.);
  • - культивируют в герметично закрытой чашке с плотной средой, на две половины которой отдельно засевают анаэробы и аэробы, которые в ходе размножения поглощают кислород (метод Фортнера).

Практически все живые организмы на Земле нуждаются в процессе дыхания. Кислород является одним из наиболее распространенных окислителей в дыхательной цепи животных, растений, протистов, многих бактерий. Однако не всем известно, насколько наш организм отличается по сложности строения от маленьких клеток микроорганизмов. Возникает вопрос: как дышат бактерии? Отличается ли их способ получения энергии от нашего?

Все ли бактерии дышат кислородом?

Не все знают, что кислород не всегда является обязательным компонентом в Он играет, прежде всего, роль акцептора электронов, поэтому данный газ хорошо окисляется и взаимодействует с протонами водорода. АТФ - это та причина, по которой все живые организмы дышат. Однако многие виды бактерий обходятся без кислорода, и все равно получают такой заветный источник энергии, как аденозинтрифосфат. Как дышат бактерии такого типа?

Процесс дыхания в нашем организме протекает на протяжении двух стадий. Первая из них - анаэробная - не требует наличия кислорода в клетке, и для нее необходимы только источники углерода и акцепторы протонов водорода. Вторая стадия - аэробная - протекает исключительно в присутствии кислорода и характеризуется большим количеством поэтапных реакций.

У бактерий, которые не усваивают кислород и не используют его для дыхания, протекает только анаэробная стадия. По ее окончанию микроорганизмы также получают АТФ, однако его количество очень сильно отличается от того, которое получаем мы после прохождения сразу двух стадий дыхания. Получается, что не все бактерии дышат кислородом.

АТФ - универсальный источник энергии

Для любого организма важно поддерживать свою жизнедеятельность. Поэтому нужно было в процессе эволюции найти источники энергии, которые при использовании смогут дать достаточно ресурсов для протекания всех необходимых реакций в клетке. Сначала появилось брожение у бактерий: так называется этап гликолиза или анаэробный этап дыхания прокариот. И только потом у более совершенных многоклеточных организмов развились приспособления, благодаря которым, с участием атмосферного кислорода КПД дыхания заметно увеличивалось. Так появился аэробный этап

Как дышат бактерии? 6 класс школьного курса биологии показывает, что для любого организма важно получение определенной доли энергии. В процессе эволюции она стала запасаться в специально синтезированных для этого молекулах, которые называются аденозинтрифосфат.

АТФ представляет собой макроэргическое вещество, основой которого является пентозное углеродное кольцо, азотистое основание (аденозин). От него отходят фосфорные остатки, между которыми и образуются высокоэнергетические связи. При разрушении одной из них высвобождается в среднем около 40 кДж, а одна молекула АТФ способна хранить в себе максимум три фосфорных остатка. Так, если АТФ распадается до АДФ (аденозиддифосфат), то клетка получает 40 кДж энергии в процессе дефосфорилирования. И, наоборот, запасание происходит путем фосфорилирования АДФ до АТФ с затратой энергии.

Гликолиз дает 2 молекулы аденозинтрифосфата, когда аэробный этап дыхания по завершению может снабдить клетку сразу 36 молекулами этого вещества. Поэтому на вопрос «Как дышат бактерии?» ответ можно дать следующий: процесс дыхания для многих прокариот заключается в образовании АТФ без наличия и затраты кислорода.

Как дышат бактерии? Типы дыхания

По отношению к кислороду все прокариоты делятся на несколько групп. Среди них:

  1. Облигатные анаэробы.
  2. Факультативные анаэробы.
  3. Облигатные аэробы.

Первая группа состоит только из тех бактерий, которые не могут жить в условиях доступа кислорода. О2 для них токсичен и ведет к гибели клетки. Примерами таких бактерий могут служить чисто симбиотические прокариоты, которые проживают внутри другого организма в условиях отсутствия кислорода.

Как дышат бактерии третьей группы? Эти прокариоты отличаются тем, что они могут жить только в условиях хорошей аэролизации. Если недостаточно кислорода в воздухе, такие клетки быстро погибают, поскольку для дыхания им жизненно необходим О2.

Чем брожение отличается от кислородного дыхания?

Брожение у бактерий - это тот же самый процесс гликолиза, который у разных видов прокариот может давать различные продукты реакции. Например, приводит к образованию побочного продукта молочной кислоты, спиртовое брожение - этанола и углекислого газа, масляно-кислое - масляной (бутановой) кислоты и т. д.

Кислородное дыхание - это полная цепь процессов, которые начинаются с этапа гликолиза с образованием и заканчиваются выделением СО2, Н2О и энергии. Последние реакции проходят в условиях присутствия кислорода.

Как дышат бактерии? Биология (6 класс) школьного курса микробиологии

В школе нам давали лишь простейшие знания о том, как происходит процесс дыхания прокариот. Митохондрий у этих микроорганизмов нет, однако, есть мезосомы - выпячивания цитоплазматической мембраны внутрь клетки. Но эти структуры играют не самую ключевую роль в дыхании бактерий.

Поскольку брожение - это разновидность гликолиза, то оно протекает в цитоплазме прокариот. Там же находятся многочисленные ферменты, необходимые для проведения всей цепочки реакций. У всех бактерий без исключения сначала образуются две молекулы пировиноградной кислоты, как у человека. И только потом они превращаются в другие побочные продукты, которые зависят от типа брожения.

Заключение

Мир прокариот, несмотря на видимую простоту клеточной организации, полон сложных и порой необъяснимых моментов. Теперь есть ответ, как дышат бактерии на самом деле, ведь не всем из них необходим кислород. Напротив, большинство приспособилось использовать другой, менее практичный способ получения энергии - брожение.

Дыхание микроорганизмов.

Наименование параметра Значение
Тема статьи: Дыхание микроорганизмов.
Рубрика (тематическая категория) Образование

Дыхание микроорганизмов представляет собой био­логическое окисление различных органических соединœений и не­которых минœеральных веществ. В итоге окислительно-восстано­вительных процессов и брожения образуется тепловая энергия, часть которой используется микробной клеткой, а остальное ко­личество выделяется в окружающую среду. Сегодня окисление определяют как процесс отнятия водорода (дегидриро­вание), а восстановление - его присоединœения. Эти термины применяют к реакциям, связанным с переносом протонов и элек­тронов или только электронов. При окислении вещества происхо­дит потеря электронов, а при восстановлении - их присоединœение. Считают, что перенос водорода и перенос электронов - эквивалентные процессы.

Энергия, освобождаемая в процессе окислительно-восстановительных реакций, накапливается в макроэргических соединœениях АДФ и АТФ (аденозиндифосфат и аденозинтрифосфат). Эти соединœенияимеют макроэргические связи, обладающие большим запасом биологически доступной энергии. Οʜᴎ локализованы в сложно устроенных структурах микробных клеток - мезосомах, или митохондриях.

По типу дыхания микроорганизмы делят на аэробов, анаэробов и факультативных анаэробов .

Аэробное дыхание микроорганизмов - это процесс, при котором последним акцептором водорода (протонов и электронов) является молекулярный кислород. В результате окисления главным образом сложных органических соединœений образуется энергия, которая выделяется в среду или накапливается в макроэргических фосфатных связях АТФ. Различают полное и неполное окисление.

Полное окисление. Основной источник энергии у микроорганизмов -углеводы. В результате расщепления глюкозы в аэробных условиях процесс окисления идет до образования диоксида углерода и воды с выделœением большого количества свободной энергии:

С 6 Н 12 О 6 + 6О 2 → 6СО 2 + 6Н 2 О + 674 ккал.

Неполное окисление. Не всœе аэробы доводят реакции окисления до конца. При избытке углеводов в среде образуются продукты неполного окисления, в которых заключена энергия. Конечными продуктами неполного аэробного окисления сахара бывают органические кислоты: лимонная, яблочная, щавелœевая, янтарная и другие, которые образуются плесневыми грибами. Так же осу­ществляется аэробное дыхание уксуснокислыми бактериями, в которых при окислении этилового спирта образуется не диоксид углерода и вода, а уксусная кислота и вода:

С 2 Н 5 ОН + О 2 → СН 3 СООН + Н 2 О + 116 ккал.

этиловый спирт уксус. к-та

Окисление этилового спирта уксуснокислыми бактериями мо­жет идти и дальше - до появления диоксида углерода и воды, при этом освобождается большое количество энергии:

С 2 Н 5 ОН + 3О 2 → 2СО 2 + 3Н 2 О + 326 ккал.

этиловый спирт

Анаэробное дыхание осуществляется без участия молекулярного кислорода. Различают собственно анаэробное дыхание (нитратное, сульфатное) и брожение . При анаэробном дыхании акцепто­ром водорода являются окисленные неорганические соединœения, которые легко отдают кислород и превращаются в более восста­новленные формы. Нитратное дыхание - восстановление нитратов до молекуляр­ного азота. Сульфатное дыхание - восстановление сульфатов до сероводо­рода.

Брожение - расщепление органических углеродсодержащих соединœений в анаэробных условиях. Оно характеризуется тем, что последнимакцептором водорода служит молекула органического вещества с ненасыщенными связями. Вещество при этом разлагаетсятолько до промежуточных продуктов, представляющих собой сложныеорганические соединœения (спирты, органические кислоты). Заключенная в них энергия не используется микробами, а образовавшаяся в небольших количествах энергия выделяется в ок­ружающую среду.

Типичными примерами анаэробного дыхания являются:

Спиртовое брожение (дыхание дрожжей в анаэробных условиях):

С 6 Н 12 О 6 → 2С 2 Н 5 ОН + 2СО 2 + 27 ккал;

этилов. спирт

Молочнокислое брожение (дыхание молочнокислых бактерий):

С 6 Н 12 О 6 → 2С 3 Н 6 О 3 + 18 ккал;

молочн. к-та

Маслянокислое брожение (дыхание маслянокислых бактерий):

С 6 Н 12 О 6 → С 3 Н 7 СООН + 2СО 2 + 2Н 2 + 15 ккал;

маслян. к-та

Как видно из приведенных уравнений, при анаэробном дыхании освобождается значительно меньше энергии, чем при аэробном. По этой причине при анаэробном дыхании для того, чтобы обеспечить потребность в крайне важно м количестве энергии, микроорганизмам крайне важно потреблять больше сахаров, чем при аэробном.

Большая часть энергии, образующейся при дыхании, освобождается в окружающую среду. Это вызывает нагревание продуктов, в которых развиваются микроорганизмы. Именно так нагревается вино, в котором происходит спиртовое брожение; нагревается влажное зерно, торф, сено.

Дыхание микроорганизмов. - понятие и виды. Классификация и особенности категории "Дыхание микроорганизмов." 2017, 2018.

Основы микробиологии, физиологии питания и санитарии

методичка

2.3 Дыхание микроорганизмов

Описанные выше процессы ассимиляции пищи протекают с затратой энергии. Потребность в энергии обеспечивается процессами энергетического обмена, сущность которых заключается в окислении органических веществ, сопровождаемом выделением энергии. Получаемые при этом продукты окисления выделяются в окружающую среду.

Схематично реакцию окисления-восстановления при участии фермента дегидрогеназы можно представить следующим образом:

АН 2 + В - А + ВН 2 + энергия

Способы получения энергии у микроорганизмов разнообразны.

В 1861 г. французский ученый Л.Пастер впервые обратил внимание на уникальную способность микроорганизмов развиваться без доступа кислорода, в то время как все высшие организмы - растения и животные - могут жить только в атмосфере, содержащей кислород.

По этому признаку (по типам дыхания) Л.Пастер разделил микроорганизмы на две группы - аэробы и анаэробы.

Аэробы для получения энергии осуществляют окисление органического материала кислородом воздуха. К ним относятся грибы, некоторые дрожжи, многие бактерии и водоросли. Многие аэробы окисляют органические вещества полностью, выделяя в виде конечных продуктов СО 2 и Н 2 О. Этот процесс в общем виде может быть представлен следующим уравнением:

С 6 Н 12 О 6 + 6О 2 = 6СО 2 + 6Н 2 О + 2822 кДж.

Анаэробы - это микроорганизмы, способные к дыханию без использования свободного кислорода. Анаэробный процесс дыхания у микроорганизмов происходит за счет отнятия у субстрата водорода. Типичные анаэробные дыхательные процессы принято называть брожениями. Примерами такого типа получения энергии могут служить спиртовое, молочнокислое и маслянокислые брожения. Рассмотрим на примере спиртового брожения:

С 6 Н 12 О 6 = 2С 2 Н 5 ОН + 2СО 2 + 118 кДж.

Отношение анаэробных микроорганизмов к кислороду различно. Одни из них совсем не переносят кислорода и носят название облигатных, или строгих, анаэробов. К ним относятся возбудители маслянокислого брожения, столбнячная палочка, возбудители ботулизма. Другие микробы могут развиваться как в аэробных, так и в анаэробных условиях. Их называют - факультативными, или условными анаэробами; это молочнокислые бактерии, кишечная палочка, протей и др.

2.4 Ферменты микроорганизмов

Ферменты - вещества, способные каталитически влиять на скорость биохимических реакций. Они играют важную роль в жизнедеятельности микроорганизмов. Открыты ферменты в 1814 г. русским академиком К.С.Кирхгофом.

Как и другие катализаторы, ферменты в реакциях превращения веществ принимают участие лишь в качестве посредников. Количественно в реакциях они не расходуются. Ферменты микроорганизмов обладают целым рядом свойств:

1) При температуре до 40-50єС увеличивается скорость ферментативной реакции, но затем скорость падает, фермент перестает действовать. При температуре выше 80°С практически все ферменты необратимо инактивируются.

2) По химической природе ферменты бывают однокомпонентными, состоящими только из белка, и двухкомпонентными, состоящими из белковой и небелковой частей. Небелковая часть у ряда ферментов представлена тем или иным витамином.

3) На активность фермента оказывает большое влияние рН среды. Для одних ферментов наилучшей является кислая среда, для других - нейтральная или слабощелочная.

4) Ферменты обладают высокой активностью. Так, молекула каталазы разрушает в минуту 5 млн молекул пероксида водорода, а 1 г амилазы при благоприятных условиях превращает в сахар 1 т крахмала.

5) Каждый фермент обладает строгой специфичностью действия, т. е. способностью влиять только на определенные связи в сложных молекулах или лишь на определенные вещества. Например, амилаза вызывает расщепление только крахмала, лактаза - молочного сахара, целлюлаза - целлюлозы и т. д.

6) Ферменты, присущие данному микроорганизму и входящие в число компонентов его клетки, называются конститутивными. Существует и другая группа - ферменты индуцируемые (адаптивные), которые вырабатываются клеткой только при добавлении к среде вещества (индуктора), стимулирующего синтез данного фермента. В этих условиях микроорганизм синтезирует фермент, которым, он не обладал.

7) По характеру действия ферменты подразделяются на экзоферменты, которые выделяются клеткой во внешнюю среду, и эндоферменты, которые прочно связаны с внутренними структурами клетки и действуют внутри нее.

8) Хотя ферменты вырабатываются клеткой, но и после ее смерти они временно еще остаются в активном состоянии и может произойти автолиз (от греч. аutos - сам, lysis - растворение) - саморастворение или самопереваривание клетки под влиянием ее собственных внутриклеточных ферментов.

В настоящее время известно более 1000 ферментов. Ферменты делятся на 6 классов:

1-й класс - оксидоредуктазы - играют большую роль в процессах брожения и дыхания микроорганизмов, т. е. в энергетическом обмене.

2-й класс - трансферазы (ферменты переноса) катализируют реакции переноса групп атомов от одного соединения к другому.

3-й класс - гидролазы (гидролитические ферменты). Они катализируют реакции расщепления сложных соединений (белки, жиры и углеводы) с обязательным участием воды.

4-й класс - лиазы включают двухкомпонентные ферменты, отщепляющие от субстратов определенные группы (СО 2 , Н 2 О, NН з и т. д.) негидролитическим путем (без участия, воды).

5-й класс - изомеразы - это ферменты,.катализирующие обратимые превращения органических соединений в их изомеры.

6-й класс - лигазы (синтетазы) - это ферменты, катализирующие синтез сложных органических соединений из более простых. Лигазы играют большую роль в углеводном и азотном обмене микроорганизмов.

Применение ферментов микробов в пищевой и легкой промышленности позволяет значительно интенсифицировать технологический процесс, повысить выход и улучшить качество готовой продукции. Препараты амилолитических ферментов применяют при производстве этилового спирта из крахмалосодержащего сырья вместо зернового солода, а в хлебопекарной промышленности взамен солода при приготовлении заварного ржаного хлеба; добавляют грибные амилазы и в пшеничное тесто. Поскольку в этом препарате помимо амилазы имеются, хотя и в небольшом количестве, другие ферменты (мальтаза, протеазы), процесс изготовления теста ускоряется, увеличиваются объем и пористость хлеба, улучшаются его внешний вид, аромат и вкус. Применение этих ферментных препаратов в пивоварении позволяет частично заменить солод ячменем. С помощью грибной глюкоамилазы получают глюкозную патоку и кристаллическую глюкозу из крахмала. Пектолитические ферментные грибные препараты используют в соко-морсовом производстве и виноделии. В результате разрушения пектина этими ферментами ускоряется процесс выделения сока, повышается его выход, фильтрация и осветление. Ферментные препараты, содержащие микробные протеазы, используют для повышения стойкости (предохранения от белкового помутнения) вина и пива, а в сыроделии - взамен (частично) сычужного фермента. Целесообразно применять микробные протеазы для размягчения мяса, ускорения созревания мяса и сельди, получения из отходов рыбной и мясной промышленности пищевых гидролизатов и для других технологических процессов переработки животного и растительного сырья.

2.5 Химический состав микроорганизмов

По составу веществ клетки микроорганизмов мало чем отличаются от клеток животных и растений. В них содержится 75-85% воды, остальные 16-25% составляет сухое вещество. Вода в клетке находится в свободном и в связанном состоянии. Связанная вода входит в состав коллоидов клетки (белки, полисахариды и др.) и с трудом высвобождается из них. Свободная вода участвует в химических реакциях, служит растворителем для различных соединений, образующихся в клетке в процессе обмена веществ.

Сухое вещество клетки состоит из органических и минеральных веществ.

белки - до 52%,

полисахариды - до 17%,

нуклеиновые кислоты (РНК до 16%, ДНК до 3%),

липиды - до 9%

Эти соединения входят в состав различных клеточных структур микроорганизмов и выполняют важные физиологические функции. В клетках микроорганизмов находятся и другие вещества - органические кислоты, их соли, пигменты, витамины и др.

Контрольные вопросы

1. Что такое тургор?

2. Что такое диссимиляция?

3. Какие микроорганизмы называются автотрофными?

4. Что такое осмос?

5. Какие микроорганизмы называются факультативными?

6. Что такое плазмолиз?

7. в каких процессах участвуют липазы?

8. Какое количество воды входит в состав микроорганизмов?

10. Какие микроорганизмы называются анаэробными?

Аэробное дыхание - это окислительный процесс, в ходе которого расходуется кислород. При дыхании субстрат без остатка расщепляется до бедных энергией неорганических веществ с высоким выходом энергии...

Аэробное и анаэробное дыхание растений

Анаэробное дыхание. Некоторые микроорганизмы способны использовать для окисления органических или неорганических веществ не молекулярный кислород, а другие окисленные соединения, например, соли азотной, серной и угольной кислот...

Гетеротрофные организмы. Окисление органических веществ (дыхание) для энергетического обеспечения жизнедеятельности

Дыхание. Первоначально люди называли дыханием просто вдыхание и выдыхание воздуха. Долгое время считали даже, что человек никак не изменяет состав воздуха при дыхании, и вообще вдыхает воздух, только чтобы охладить «перегретые» лёгкие...

Дыхательная система человека

Различают внешнее дыхание - совокупность процессов, обеспечивающих поступление в организм кислорода и удаление углекислого газа клеточное, или тканевое...

Иммобилизованные растительные клетки

О жизнеспособности клеток судят по их дыханию, которое можно измерять в течение инкубации через различные промежутки времени. Измерения проводят с помощью кислородного электрода Кларка по следующей стандартной методике. Клетки...

Морфология и метаболизм дрожжей

При росте в аэробных условиях при низком содержании глюкозы в среде дрожжи получают АТФ за счет процессов дыхания, как это делает большинство аэробных организмов...

При анаэробном дыхании конечным акцептором электронов могут являться углеводы, в числе других органических веществ, но не молекулярный кислород. Бактерии, способные к анаэробному дыханию, имеют укороченную дыхательную цепь...

Превращение микроорганизмами соединений углерода

При аэробном дыхании донором водорода или электронов являются органические (реже неорганические) вещества, а конечным акцептором - молекулярный кислород. При аэробном дыхании пируват, образованный в ходе гликолиза и пути Энтнера-Дудорова...

Предмет, задачи и методы физиологии растений

В процессе дыхания участвует сложная цепь окислительно-восстановительных превращений углеводов и жиров. Под окислением какого-либо соединения понимают процесс потери им электрона (протона), под восстановлением -- их присоединения...

Регуляция дыхания

На активность нейронов дыхательного центра выраженное влияние оказывают рефлекторные воздействия. Различают постоянные и непостоянные (эпизодические) рефлекторные влияния на дыхательный центр...

Способы размножения у различных микроорганизмов, сущность и химизм их дыхания

Потребность в энергии обеспечивается процессами энергетического обмена, сущность которых заключается в окислении органических веществ, сопровождаемом выделением энергии...

Стадии дыхания семян злаковых

Анаэробное окисление углеводов идёт по пути гликолиза. Гликолиз - это анаэробный процесс, приводящий к распаду одной молекулы глюкозы на две молекулы пировиноградной кислоты. При этом высвобождается энергия...

Строение, свойства и функции белков

Клеточное дыхание, или тканевое дыхание, или внутреннее дыхание - это совокупность управляемых окислительно-восстановительных реакций в клетке, главным назначением и результатом которых является образование энергии...

Физиология дыхания

Дыхание- это совокупность процессов, обеспечивающих потребление организмом кислорода и выделение двуокиси углерода. - В условиях покоя в организме за 1 минуту потребляется в среднем 250 - 300 мл О2 и выделяется 200 - 250 мл СО2...

Физиология дыхания

Внешнее дыхание осуществляется благодаря изменениям объема грудной клетки и сопутствующим изменениям объема легких. Во время вдоха объем грудной клетки увеличивается, а во время выдоха - уменьшается...

Дыхание, или биологическое окисление, основано на окислительно-восстановительных

реакциях, идущих с образованием АТФ-универсального аккумулятора химической энергии.

Энергия необходима микробной клетке для ее жизнедеятельности. При дыхании происходят

процессы окисления и восстановления: окисление. отдача донорами (молекулами или

атомами) водорода или электронов; восстановление. присоединение водорода или электронов

к акцептору. Акцептором водорода или электронов может быть молекулярный кислород (такое

дыхание называется аэробным) или нитрат, сульфат, фумарат (такое дыхание называется

анаэробным. нитратным, сульфатным, фумаратным). Анаэробиоз (от греч. аег. воздух +

bios . жизнь) . жизнедеятельность, протекающая при отсутствии свободного кислорода. Если

донорами и акцепторами водорода являются органические соединения, то такой процесс

называется брожением. При брожении происходит ферментативное расщеп-

ление органических соединений, преимущественно углеводов, в анаэробных условиях. С

учетом конечного продукта расщепления углеводов различают спиртовое, молочнокислое,

уксуснокислое и ДРУгие виды брожения.

По отношению к молекулярному кислороду бактерии можно разделить на три основные группы:

облигатные, т.е. обязательные, аэробы, облигатные анаэробы и факультативные анаэробы.

Облигатные аэробы могут расти только при наличии кислорода. Облигатные анаэробы

(клостридии ботулизма, газовой гангрены, столбняка, бактероиды и др.) растут только на

среде без кислорода, который для них токсичен. При наличии кислорода бактерии образуют

перекисные радикалы кислорода, в том числе перекись водорода и супероксид-анион

кислорода, токсичные для облигатных анаробных бактерий, поскольку они не образуют

соответствующие инактивирующие ферменты. Аэробные бактерии инактивируют перекись

водорода и супероксид-анион соответствующими ферментами (каталазой, пероксидазой и

супероксиддисмутазой). Факультативные анаэробы могут расти как при наличии, так и при

отсутствии кислорода, поскольку они способны переключаться с дыхания в присутствии

молекулярного кислорода на брожение в его отсутствие. Факультативные анаэробы способны

осуществлять анаэробное дыхание, называемое нитратным: нитрат, являющийся акцептором

водорода, восстанавливается до молекулярного азота и аммиака.

Среди облигатных анаэробов различают аэротолерантные бактерии, которые сохраняются при

наличии молекулярного кислорода, но не используют его.

Для выращивания анаэробов в бактериологических лабораториях применяют анаэростаты.

специальные емкости, в которых воздух заменяется смесью газов, не содержащих кислорода.

Воздух можно удалять из питательных сред путем кипячения, с помощью химических

адсорбентов кислорода, помещаемых в анаэростаты или другие емкости с посевами.