Кто впервые установил движение солнечной системы относительно окружающих её звёзд. Как движется солнечная система. Что это означает для нас

Звезды в древности считались неподвижными друг относительно друга. Однако в XVIII в. было обнаружено очень медленное перемещение Сириуса по небу. Оно заметно лишь при сравнении точных измерений его положения, сделанных с промежутком времени в десятилетия.

Собственным движением звезды называется ее видимое угловое смещение по небу за один год. Оно выражается долями секунды дуги в год.

Только звезда Барнарда проходит за год дугу в что за 200 лет составит 0,5°, или видимый поперечник Луны. За это звезду Барнарда назвали «летящей». Но если расстояние до звезды неизвестно, то ее собственное движение мало что говорит об ее истинной скорости.

Например, пути, пройденные звездами за год (рис. 98), могут быть разные: а соответствующие им собственные движения одинаковые.

2. Компоненты пространственной скорости звезд.

Скорость звезды в пространстве можно представить как векторную сумму двух компонент, один из которых направлен вдоль луча зрения, другой перпендикулярен ему. Первый компонент представляет собой лучевую, второй - тангенциальную скорость. Собственное движение звезды определяется лишь ее тангенциальной скоростью и не зависит от лучевой. Чтобы вычислить тангенциальную скорость в километрах в секунду, надо выраженное в радианах в год, умножить на расстояние до звезды выраженное в километрах,

Рис. 98. Собственное движение лучевая тангенциальная и полная пространственная скорость звезды .

Рис. 99. Изменение видимого расположения ярких звезд созвездия Большой Медведицы вследствие их собственных движений: сверху - 50 тыс. лет назад; в середине - в настоящее время; внизу - через 50 тыс. лет.

и разделить на число секунд в году. Но так как на практике всегда определяется в секундах дуги, в парсеках, то для вычисления в километрах в секунду получается формула:

Если определена по спектру и лучевая скорость звезды то пространственная скорость ее V будет равна:

Скорости звезд относительно Солнца (или Земли) обычно составляют десятки километров в секунду.

Собственные движения звезд определяют, сравнивая фотографии выбранного участка неба, сделанные на одном и том же телескопе через промежуток времени, измеряемый годами или даже десятилетиями. Из-за того, что звезда движется, ее положение на фоне более далеких звезд за это время немного изменяется. Смещение звезды на фотографиях измеряют с помощью специальных микроскопов. Такое смещение удается оценить лишь для сравнительно близких звезд.

В отличие от тангенциальной скорости лучевую скорость можно измерить, даже если звезда очень далека, но яркость ее достаточна для получения спектрограммы.

Звезды, близкие друг к другу на небе, в пространстве могут быть расположены далеко друг от друга и двигаться с различными скоростями. Поэтому по истечении тысячелетий вид созвездий должен сильно меняться вследствие собственных движений звезд (рис. 99).

3. Движение Солнечной системы.

В начале XIX в. В. Гершель

установил по собственным движениям немногих близких звезд, что по отношению к ним Солнечная система движется в направлении созвездий Лиры и Геркулеса. Направление, в котором движется Солнечная система, называется апексом движения. Впоследствии, когда стали определять по спектрам лучевые скорости звезд, вывод Гершеля подтвердился. В направлении апекса звезды в среднем приближаются к нам со скоростью 20 км/с, а в противоположном направлении с такой же скоростью в среднем удаляются от нас.

Итак, Солнечная система движется в направлении созвездий Лиры и Геркулеса со скоростью 20 км/с по отношению к соседним звездам Задавать вопрос о том, когда мы долетим до созвездия Лиры, бессмысленно, так как созвездие не является пространственно ограниченным образованием. Одни звезды, которые сейчас мы относим к созвездию Лиры, мы минуем раньше (на огромном от них расстоянии), другие будут всегда оставаться практически так же далеки от нас, как и сейчас.

(см. скан)

4. Если звезда (см. задачу 1) приближается к нам со скоростью 100 км/с, то как изменится ее яркость за 100 лет?

4. Вращение Галактики.

Все звезды Галактики обращаются вокруг ее центра. Угловая скорость обращения звезд во внутренней области Галактики (почти до Солнца) примерно одинакова, а внешние ее части вращаются медленнее. Этим обращение звезд в Галактике отличается от обращения планет в Солнечной системе, где и угловая, и линейная скорости быстро уменьшаются с увеличением радиуса орбиты. Это различие связано с тем, что ядро Галактики не преобладает в ней по массе, как Солнце в Солнечной системе.

Солнечная система совершает полный оборот вокруг центра Галактики примерно за 200 млн. лат со скоростью 250 км/с.

Куда летишь – Красно Солнышко , куда влечешь нас за собой? — Вроде бы вполне простой вопрос, на который может дать ответ даже школьник старших классов. Однако если взглянуть на эту проблему с позиций космологических воззрений Сокровенного Учения Востока, то ответ на этот, казалось бы, нетрудный для современного образованного человека вопрос, скорее всего, окажется далеко не таким простым и очевидным. Читатель, наверное, уже догадался, что тема этого очерка будет посвящена галактической орбите нашей Солнечной системы. Следуя нашей традиции, попытаемся рассмотреть этот вопрос, как с научной точки зрения, так и с позиций Теософской Доктрины и Учения Агни Йога.

Заранее хотелось бы сказать о следующем. На сегодняшний день космологической информации по этим вопросам, как научного плана, так и особенно эзотерического характера очень не много. Поэтому основным результатом нашего рассмотрения может быть лишь констатация совпадений или расхождений взглядов по ряду основополагающих моментов этой тематики.

Напомним нашим читателям, что если в пределах Солнечной системы основной единицей измерения удалений небесных тел друг от друга являлась астрономическая единица (а.е. ), равная среднему удалению Земли от Солнца (примерно 150 млн. км.), то на звездных и галактических просторах используются уже другие единицы измерения расстояний. Чаще всего используют такие единицы, как световой год (расстояние проходимое светом за один земной год) равный 9,46 триллионов км , и парсек (пк) – 3,262 светового года. Также необходимо отметить, что определять внешние размеры галактики, находясь внутри ее – дело весьма сложное. Поэтому значения параметров нашей галактики, приведенные ниже, имеют лишь ориентировочный характер.

Прежде чем рассматривать, куда и каким образом летит в галактическом пространстве Солнечная система, очень коротко расскажем о нашей родной галактике называемой – Млечный Путь .


Млечный Путь – типичная спиральная галактика средних размеров, имеющая выраженную центральную перемычку. Диаметр диска галактики составляет порядка 100 000 световых лет (св. г.). Солнце расположено почти в плоскости диска на среднем удалении в 26 000 +/- 1400 св.г. от центра ядра галактики. Принято считать, что толщина галактического диска в районе Солнца составляет около 1000 св. г. Однако некоторые исследователи полагают, что этот параметр может достигать и 2000 — 3000 св.г. Количество звезд, входящих в состав Млечного Пути, по различным оценкам колеблется от 200 до 400 миллиардов. Вблизи плоскости диска концентрируются молодые звезды и звездные скопления, возраст которых не превышает нескольких миллиардов лет. Они образуют так называемую плоскую составляющую. Среди них очень много ярких и горячих звезд. Газ в диске Галактики также сосредоточен в основном вблизи его плоскости.

Все четыре основных спиральных рукава галактики (рукава Персея, Стрельца, Центавра и Лебедя ) расположены в плоскости галактического диска. Солнечная система находится внутри небольшого рукава Ориона , имеющего длину около 11000 св. г. и диаметр порядка 3500 св. г. Иногда этот рукав также называют Местный рукав или Шпора Ориона. Рукав Ориона обязан своим названием находящимся вблизи него звёздам из Созвездия Ориона. Он расположен между рукавом Стрельца и рукавом Персея. В рукаве Ориона Солнечная система находится вблизи его внутреннего края.

Интересно, что спиральные рукава галактики вращаются как единое целое, с одной и той же угловой скоростью. На определенном удалении от центра галактики скорость вращения рукавов практически совпадает со скоростью вращения вещества диска галактики. Зона, в которой наблюдается совпадение угловых скоростей, представляет собой узкое кольцо, вернее, тор радиусом порядка 250 парсек. Эта кольцеобразная область вокруг центра галактики получила название зоны коротации (совместного вращения).

По мнению ученых, именно в этой зоне коротации и находится в настоящее время наша Солнечная система. Чем же интересна эта зона для нас? Не вдаваясь в излишние подробности, скажем лишь, что нахождение Солнца в этой узкой зоне, дает ей весьма спокойные и комфортные условия для звездной эволюции . А это в свою очередь, как полагают некоторые ученые, обеспечивает благоприятные возможности для развития биологических форм жизни на планетах. Такое особое расположение звездных систем в этой зоне дает больше шансов для развития жизни. Поэтому зону коротации иногда называют галактическим поясом жизни. Предполагается, что аналогичные зоны коротации должны присутствовать и в других спиральных галактиках.

В настоящее время Солнце вместе с нашей системой планет располагается на окраине рукава Ориона между основными спиральными рукавами Персея и Стрельца и медленно движется по направлению к рукаву Персея. Согласно расчетам Солнце сможет достигнуть рукава Персея через несколько миллиардов лет.

Что говорит наука о траектории движения Солнца в галактике Млечный Путь?

Однозначного мнения по этому вопросу нет, но большинство ученых полагает, что Солнце движется вокруг центра нашей галактики по слабо эллиптичной орбите, очень медленно, но регулярно пересекая галактические рукава. Однако некоторые исследователи считают, что орбита Солнца может представлять собой довольно таки вытянутый эллипс.

Считается также, что в данную эпоху Солнце находится в северной части галактики на расстоянии 20-25 парсек от плоскости галактического диска . Солнце движется в направлении галактического диска и угол между плоскостью эклиптики Солнечной системы и плоскостью галактического диска составляет около 30 град. Ниже приведена условная схема взаимной ориентации плоскости эклиптики и галактического диска.

Кроме движения по эллипсу вокруг ядра галактики Солнечная система совершает также гармонические волнообразные вертикальные колебания относительно галактической плоскости, пересекая её каждые 30-35 миллионов лет и оказываясь то в северном, то в южном галактическом полушарии . Согласно расчетам некоторых исследователей Солнце пересекает галактический диск каждые 20-25 млн. лет.

Величины максимального подъема Солнца над галактическим диском в северном и южном полушариях галактики могут составлять приблизительно 50-80 парсек . Более точных данных по периодическому «нырянию» Солнца ученые пока представить не могут. Надо сказать, что законы небесной механики в принципе не отвергают возможность существования подобного рода гармонических движений и даже позволяют сделать расчет траектории.

Однако, вполне возможно, что такое ныряющее движение может являться обыкновенной вытянутой спиралью. Ведь на самом деле в Космосе все небесные тела движутся именно по спиралям . И мысль – зародительница всего Сущего, также летит по своей спирали . О спиралях солнечной орбиты мы поговорим во второй части нашего очерка, а сейчас вернемся к рассмотрению орбитального движения Солнца.

Вопрос об измерении скорости движения Солнца неразрывно связан с выбором системы отсчета. Солнечной система находится в постоянном перемещении относительно ближних звезд, межзвездного газа и центра Млечного Пути. Впервые движение Солнечной системы в нашей галактике было замечено Уильямом Гершелем.

В настоящее время установлено, что все звезды кроме общего переносного движения вокруг центра галактики обладают еще индивидуальным , так называемым пекулярным движением . Движение Солнца в направлении границы созвездий Геркулес и Лира – есть пекулярное движение , а движение в направлении созвездия Лебедя переносное , общее с другими ближайшими звездами, обращающимися около ядра галактики.

Принято считать, что скорость пекулярного движения Солнца составляет около 20 км/с, и это движение направлено к так называемому апексу – точке, к которой также направлено движение других близлежащих звезд. Скорость же переносного или общего движения вокруг центра галактики в направлении созвездия Лебедя намного больше и составляет по разным оценкам 180 — 255 км/с.

В связи с таким значительным разбросом скоростей общего движения длительность одного оборота Солнечной системы по волнообразной траектории вокруг центра Млечного Пути (галактический год) также может составлять по разным данным от 180 до 270 миллионов лет . Запомним эти значения для дальнейшего рассмотрения.

Итак, согласно имеющимся научным данным наша Солнечная система в настоящее время находится в северном полушарии Млечного Пути и движется под углом в 30 град. к галактическому диску со средней скоростью около 220 км/сек. Возвышение от плоскости галактического диска составляет примерно 20-25 парсек. Ранее уже указывалось, что толщина галактического диска в районе орбиты Солнца примерно равна 1000 св. г.

Зная толщину диска, величину возвышения Солнца над диском, скорость и угол входа Солнца в диск, можно определить время, через которое мы войдем в галактический диск и выйдем из него уже в южном полушарии Млечного Пути. Сделав эти несложные вычисления, получим, что примерно через 220 000 лет Солнечная система войдет в плоскость галактического диска и еще через 2,7 млн . лет выйдет из него. Таким образом, примерно через 3 млн. лет наше Солнце и наша Земля окажутся уже в южном полушарии Млечного Пути . Конечно, выбранная нами для расчета величина толщины галактического диска может варьироваться в весьма широких пределах, поэтому и вычисления носят лишь оценочный характер.

Итак, если научные данные, которыми мы сейчас располагаем, верны, то люди конца 6 -й Коренной Расы и 7 -й Расы Земли уже будут жить в новых условиях южного полушария галактики.

Обратимся теперь к космологическим записям Е.И.Рерих 1940-1950 гг.

Краткие упоминания о галактической орбите Солнца можно найти в очерке Е.И.Рерих «Беседы с Учителем» , раздел «Солнце» (ж. «Новая Эпоха», № 1/20, 1999 г.). Несмотря на то, что этой теме посвящено всего лишь несколько строк, информация, содержащаяся в этих записях, представляет огромный интерес. Говоря об особенностях нашей Солнечной системы, Учитель сообщает следующее.

«Наша Солнечная Система уявляет одну из разновидностей среди группировок пространственных тел вокруг одного тела – Солнца. Наша Солнечная система разнится от других систем. Наша Система определенно очерчена планетами, явно ходящими вокруг нашего Солнца. Но такое определение не точно. Система определяется или очерчивается не только механикой планет вокруг солнца, но явно и солнечной орбитой – орбита эта колоссальна. Но все же она, как атом в видимом Космосе.

Наша Астрономия разнится от современной. Ярая тропа Солнца еще не исчисляется астрономами. Прохождение полного круга эллипса возьмет время не менее биллиона лет» .

Обращаем внимание на очень важный момент. В отличие от современной астрономии Астрономия Сокровенного Знания определяет границы Солнечной системы не только орбитами далеких внешних планет, вращающихся вокруг Солнца, но и самой солнечной орбитой, пролегающей вокруг центра нашей галактики . Кроме того, указывается, что один оборот вокруг центра галактики Солнце проходит по эллипсу не менее чем за миллиард (биллион) лет . Напомним, что согласно современным научным данным, Солнце совершает свой оборот вокруг ядра галактики всего за 180 – 270 миллионов лет. О возможных причинах столь сильных расхождений в длительностях галактического года мы расскажем во второй части очерка. Далее Е.И.Рерих пишет.

«Скорость прохождения Солнца яро быстрее скорости Земли по своему эллипсу. Скорость Солнца превышает во много раз скорость Юпитера. Но скорость Солнца мало заметна из-за ярой относительной скорости хода Зодиака» .

Эти строки позволяют сделать вывод, что в вопросе оценки скоростей общего движения Солнца вокруг центра галактики и пекулярного (собственного) движения относительно ближайших звезд, между современной наукой и Сокровенным Знанием имеется полное согласие . Действительно, если скорость общего орбитального движения Солнца находится в пределах 180 – 255 км/сек., то средняя скорость движения Земли по эллипсу своей орбиты составляет лишь 30 км/сек., а Юпитера и того меньше – 13 км/сек. Однако собственная (пекулярная) скорость Солнца относительно ярких звезд зодиакального пояса и ближайших звезд составляет лишь 20 км/сек. Поэтому относительно Зодиака перемещение Солнца мало заметно.

«Солнце уйдет из пояса Зодиака и уявится на новом поясе созвездий за Млечным Путем. Млечный Путь не только кольцо, но новая атмосфера. Солнце будет акклиматизироваться с новой атмосферой, проходя через кольцо Млечного Пути. Оно не только безмерно глубоко, но кажется именно бездонным земному сознанию. Зодиак лежит на пределе Кольца Млечного Пути.

Ярое Солнце несется по своей орбите, направляясь в созвездие Геркулеса. На пути своем оно пересечет кольцо Млечного Пути и яро выступит за пределы его» .

Центр Млечного Пути (вид с боку)

Очевидно, что смысл последнего фрагмента записей практически во всем совпадает с данными астрономической науки наших дней о движении Солнца относительно галактического диска, который в записях именуется, как « Кольцо Млечного Пути «. Ведь, по сути, говорится о том, что со временем за счет своего движения Солнце покинет это галактическое полушарие и, пройдя галактический диск – Кольцо Млечного Пути, обоснуется в другом полушарии галактики. Естественно, что вокруг эклиптики уже будут другие звезды, образующие новый зодиакальный пояс.

Кроме того, действительно, «атмосфера» галактического диска существенно отличается в большую сторону по плотности галактического вещества, по сравнению с плотностью вещества в пространстве, где сейчас мы находимся. Поэтому и Солнце и вся наша планетная система будет вынуждена адаптироваться к существованию в новых, вероятно, более суровых космических условиях.

Солнце пересечет галактический диск («кольцо Млечного Пути» ) и существенно поднимется над его плоскостью («яро выступит за пределы его» ). Эта строка записей, вероятно, может рассматриваться как некое косвенное подтверждение того факта, что наша Солнечная система движется вокруг центра галактики по волнистой или спиральной траектории, периодически «ныряя» то в одно, то в другое галактическое полушарие. Хотя однозначного подтверждения этого факта записи, конечно, не дают. Не исключен вариант, что траектория движения Солнца вокруг центра галактики может представлять собой не волнистый, а гладкий эллипс, но наклоненный под значительным углом к плоскости галактического диска. Тогда число пересечений плоскости диска будет равно двум (восходящий и нисходящий узел орбиты).

Итак, мы видим, что в своем качественном отношении, представления современной науки о галактическом движении Солнца весьма близко совпадают с позицией Эзотерической Астрономии по этому вопросу . Однако в оценках длительности галактического года и в определении пространственных очертаний Солнечной системы имеются серьезные расхождения. Напомним, что согласно разным научным данным галактический год равен 180 – 270 миллионов лет, тогда как Космологические записи утверждают, что Солнце проходит свой эллипс не менее чем за миллиард лет .

В своих оценках и рассмотрениях мы, конечно, исходим из тех предпосылок, что современная наука еще только начинает свой путь познавания Космоса, тогда как Великие Космические Учителя, возглавляющие ныне эволюцию звезд, планет и человечеств, этот начальный путь Знаний уже давно прошли. Поэтому оспаривать Их утверждения было бы просто неразумно. Тогда в чем же кроются возможные причины таких расхождений? Об этом как раз мы и собираемся рассказать .

Движение звезд

<>движутся в про

странстве. Однако эти движения происходят на таких далеких от нас расстояниях, что лишь по прошествии многих тысячелетий изменения в расположении звезд в созвездиях могут стать достаточно заметными, даже и при самых точных наблюдениях. Многие звезды движутся в пространстве так, что-либо становятся к нам все ближе, либо удаляются от нас: они движутся по лучу зрения. Это движение невозможно обнаружить наблюдениями положений звезд. Здесь снова на помощь приходит спектральный анализ: смещение линий в спектре той или иной звезды к красному или фиолетовому концу спектра показывает, движется ли звезда от нас, или к нам. По величине этого смещения вычисляются и скорости движения по лучу зрения. Еще в XVIII в. астрономы заметили, что звезды в области, лежащей у границы созвездий Геркулеса и Лиры, как бы расступаются в разные стороны от одной точки неба. В прямо противоположной области - в созвездии Большого Пса - звезды как бы сближаются. Такое смещение происходит потому, что сама наша солнечная система движется относительно этих звезд, приближаясь к одним и удаляясь от других. Движение солнечной системы относительно окружающих ее звезд, впервые установленное в 1783 г. В. Гершелем, происходит со скоростью около 20 км/сек в направлении к созвездиям Лиры и Геркулеса.

На протяжении многих веков астрономы называли звезды "неподвижными", отличая их этим названием от планет, которые движутся, "блуждают" на фоне звезд. Точные измерения видимых положений звезд и сравнение этих положений с наблюдениями, сделанными в древние времена, привели английского астронома Галлея к выводу, что звезды перемещаются, <>движутся в пространстве. Однако эти движения происходят на таких далеких от нас расстояниях, что лишь по прошествии многих тысячелетий изменения в расположении звезд в созвездиях могут стать достаточно заметными, даже и при самых точных наблюдениях. Многие звезды движутся в пространстве так, что-либо становятся к нам все ближе, либо удаляются от нас: они движутся по лучу зрения. Это движение невозможно обнаружить наблюдениями положений звезд. Здесь снова на помощь приходит спектральный анализ: смещение линий в спектре той или иной звезды к красному или фиолетовому концу спектра показывает, движется ли звезда от нас, или к нам. По величине этого смещения вычисляются и скорости движения по лучу зрения. Еще в XVIII в. астрономы заметили, что звезды в области, лежащей у границы созвездий Геркулеса и Лиры, как бы расступаются в разные стороны от одной точки неба. В прямо противоположной области - в созвездии Большого Пса - звезды как бы сближаются. Такое смещение происходит потому, что сама наша солнечная система движется относительно этих звезд, приближаясь к одним и удаляясь от других. Движение солнечной системы относительно окружающих ее звезд, впервые установленное в 1783 г. В. Гершелем, происходит со скоростью около 20 км/сек в направлении к созвездиям Лиры и Геркулеса.

Светимость

Долгое время астрономы полагали, что различие видимого блеска звёзд связано только с расстоянием до них: чем дальше звезда, тем менее яркой она должна казаться. Но когда стали известны расстояния до звёзд, астрономы установили, что иногда более далёкие звёзды имеют больший видимый блеск. Значит, видимый блеск звёзд зависит не только от их расстояния, но и от действительной силы их света, то есть от их светимости. Светимость звезды зависит от размеров поверхности звёзд и от её температуры. Светимость звезды выражает её истинную силу света по сравнению с силой света Солнца. Например, когда говорят, что светимость Сириуса равна 17, это значит, что истинная сила его света больше силы света Солнца в 17 раз.

Определяя светимости звёзд, астрономы установили, что многие звёзды в тысячи раз ярче Солнца, например, светимость Денеба (альфа Лебедя) - 9400. Среди звёзд есть и такие, которые излучают в сотни тысяч раз больше света, чем Солнце. Примером может служить звезда, обозначаемая буквой S в созвездии Золотой Рыбы. Она светит в 1 000000 раз ярче Солнца. Другие звёзды имеют одинаковую или почти одинаковую с нашим Солнцем светимость, например, Альтаира (Альфа Орла) -8. Существуют звёзды, светимость которых выражается тысячными долями, то есть их сила света в сотни раз меньше, чем у Солнца.

Цвет, температура и состав звезд

Звёзды имеют различный цвет. Например, Вега и Денеб - белые, Капелла -желтоватая, а Бетельгейзе - красноватая. Чем ниже температура звезды, тем она краснее. Температура белых звёзд достигает 30 000 и даже 100 000 градусов; температура жёлтых звёзд составляет около 6000 градусов, а температура красных звёзд - 3000 градусов и ниже.

Звёзды состоят из раскалённых газообразных веществ: водорода, гелия, железа, натрия, углерода, кислорода и других.

Скопление звезд

Звёзды в огромном пространстве Галактики распределяются довольно равномерно. Но некоторые из них всё же скапливаются в определённых местах. Разумеется, и там расстояния между звёздами всё равно очень велики. Но из-за гигантских расстояний такие близко расположенные звёзды выглядят как звёздное скопление. Поэтому их так называют. Самым известным из звёздных скоплений являются Плеяды в созвездии Тельца. Невооруженным глазом в Плеядах можно различить 6-7 звезд, расположенных очень близко друг к другу. В телескоп их видно более сотни на небольшой площади. Это и есть одно изскоплений, в котором звезды образуют более или менее обособленную систему, связанную общим движением в пространстве. Диаметр этого звездного скопления около 50 световых лет. Но даже и при видимой тесноте звезд в этом скоплении они на самом деле достаточно далеки друг от друга. В этом же созвездии, окружая его главную - самую яркую - красноватую звезду Аль-дебаран, находится другое, более разбросанное звездное скопление - Гиады.

Некоторые звездные скопления в слабые телескопы имеют вид туманных, размытых пятнышек. В более сильные телескопы эти пятнышки, особенно к краям, распадаются на отдельные звезды. Большие телескопы дают возможность установить, что это особенно тесные звездные скопления, имеющие шаровидную форму. Поэтому подобные скопления получили название шаровых. Шаровых звездных скоплений сейчас известно больше сотни. Все они находятся очень далеко от нас. Каждое из них состоит из сотен тысяч звёзд.

Вопрос о том, что представляет собой мир звезд, по-видимому является одним из первых вопросов, с которым столкнулось человечество еще на заре цивилизации. Любой человек, созерцающий звездное небо, невольно связывает между собой наиболее яркие звезды в простейшие фигуры - квадраты, треугольники, кресты, становясь невольным создателем своей собственной карты звездного неба. Этот же путь прошли и наши предки, делившие звездное небо на четко различимые сочетания звезд, называемые созвездиями. В древних культурах мы находим упоминания о первых созвездиях, отождествляемых с символами богов или мифами, дошедшие до нас в форме поэтических названий - созвездие Ориона, созвездие Гончих псов, созвездие Андромеды и т.д. Эти названия как бы символизировали представления наших предков о вечности и неизменности мироздания, постоянстве и неизменности гармонии космоса.

Главная > Документ

Движение звезд и солнечной системы

Георгий А. Хохлов

Россия, Санкт-Петербург

Март 14, 2009

Ещё итальянский философ Дж. Бруно (1548-1600), отож-дествляя физическую природу Солнца и звёзд, утверждал, что все они движутся в беспре-дельном пространстве. Вслед-ствие этого движения видимые положения звезд на небе посте-пенно изменяются. Однако из-за колоссального удаления звезд эти изменения настолько малы, что даже у наиболее близких звезд могут быть обна-ружены невооруженным глазом лишь через тысячи и десятки тысяч лет. Но, как известно, такими возможностями ни один человек не обладает. Поэтому единственный способ обнару-жения смещения звезд на не-бе - это сравнение их видимых положений, разделенных боль-шими интервалами времени. Впервые такое сравнение положений ярких звезд провел в 1718 г. английский астроном Э. Галлей по двум звездным каталогам (спискам звёзд). Первый каталог был составлен еще во второй половине II в. до н. э. выдающимся древнегреческим астрономом Гиппархом Родосским (этот каталог содержится в знаме-нитом «Большом сочинении» александрийского астронома К- Птолемея, созданном им около 140 г. н. э. и более известном в латинском пере-воде под названием «Альма-гест») . Второй каталог был составлен в 1676-1710 гг. директором Гринвичской обсер-ватории Дж. Флемстидом (1646-1719). Галлей установил, что почти за 2000 лет, разделяющих оба каталога, звезды Сириус (а Большого Пса) и Процион (а Малого Пса) сместились примерно на 0,7°, а Арктур (а Волопаса) более чем на 1°. Такие большие смещения, пре-вышающие видимый диаметр Луны (0,5°), не оставляли сомнения в пространственном движении звезд. В настоящее время соб-ственные движения звезд изу-чаются по фотографиям звезд-ного неба, полученным с ин-тервалом времени в несколько десятков лет, начало и конец которого именуются эпохами наблюдений. Полученные не-гативы совмещают, т.е. накладывают друг на друга, и тогда на них сразу выявляются сместившиеся звезды. Эти сме-щения измеряют с точностью до 1 мкм и по масштабу негатива переводят в угловые секунды. Хотя наблюдения проводят с Земли, но в конечном итоге всегда вычисляют простран-ственную скорость звёзд отно-сительно Солнца. Пусть в не-который день года t1 (первая эпоха наблюдений) звезда N 1 видна на небе в точке n 1 . Она находится от Солнца на расстоянии r и движется от-носительно него в пространстве со скоростью V (см. рисунок). Проекция пространственной скорости V на луч зрения r представляет собой лучевую скорость V r звезды, а перпен-дикулярная к ней проекция Vt называется тангенциальной скоростью. Через несколько де-сятков лет, ко второй эпохе наблюдений t 2 , звезда пере-местится в пространстве в точку N 2 и будет видна на небе в точке n 2 , т. е. за разность эпох (t 2 -t 1 ) звезда сместится по небу на дугу n 1 n 2 , видимую с Земли под малым углом σ, который из-меряется на совмещённых не-гативах. Из-за колоссального удаления звёзд точно такое же смещение σ будет и относи-тельно Солнца. Видимое смещение звезды на небе за 1 год

Называется собственным дви-жением звезды и выражается в угловых секундах в год ("/год). (В программах-планетариях, астрономических календа-рях и справочниках указыва-ются только угловые секунды дуги, а единица знаменателя подразу-мевается, о чём нужно твёрдо помнить.) За разность эпох наблю-дений (t 2 -t 1 ) звезда в направ-лении тангенциальной скорости пройдёт в пространстве путь

s = V t (t 2 -t 1 ) = r tgσ. (2)

Из-за малости угла σ , выра-жаемого в угловых секундах,

Тогда с учётом формулы (1)

Но расстояния r до звёзд выражают в парсеках (пк), a µ- в угловых секундах в год ("/год). Нам необходимо знать V t , в километрах в секунду (км/с). Помня, что 1 пк = = 206265 а. е. =206 265 1,49610 8 км, а 1 год содер-жит 3,15610 7 с, найдём

Vt = 2062651,49610 7 км r

Vt = 4.74 µ r км/с (3)

Причём в этой формуле r выражено в парсеках. Но расстояния r до звёзд вычисляются по их измеренным годичным параллаксам π (Годичный параллакс - угол, под которым виден средний радиус Земной орбиты из центра масс звезды, если направление на звезду перпендикулярно радиусу земной орбиты), по простой формуле
Поэтому тангенциальная скорость звезды в километрах в секунду равна

Где µ и π - выражены в секундах дуги. Лучевая скорость звёзд оп-ределяется по смещению ли-ний в их спектрах. Найденная по спектрограммам лучевая скорость звёзд являет-ся скоростью относительно Земли и включает в себя её орбитальную скорость, направ-ление которой из-за движения вокруг Солнца непрерывно ме-няется (за полгода - на 180°). Из-за этого на протяже-нии года лучевая скорость звёзд испытывает периодичес-кие изменения в определённых пределах (это тоже служит одним из доказательств об-ращения Земли вокруг Солн-ца). Поэтому в найденные по спектрограммам лучевые ско-рости вносят поправки, учиты-вающие значение и направле-ние скорости Земли в дни фотографирования спектров, и по ним вычисляют лучевую скорость звезды V r относитель-но Солнца. Тогда простран-ственная скорость звезды, называемая ещё гелиоцентри-ческой скоростью

(5),

Направление которой опреде-ляется углом θ относительно направления на Солнце, так что

(6)

При удалении звезды от Солнца её лучевая скорость V r > 0, а при приближении V r < 0. Новой эпохой в определении собственного движения звёзд стал полёт спутника Hipparcos (HI gh P recision PAR arallax CO llecting S atellite), который за 37 месяцев работы провёл миллионы измерений звёзд. В результате работы получилось два звёздных каталога. Каталог HIPPARCOS содержит измеренные с ошибкой порядка одной тысячной угловой секунды координаты, собственные движения и параллаксы для 118 218 звёзд. Такая точность для звёзд достигнута в астрометрии впервые. Во второй каталог - TYCHO приводятся несколько менее точные сведения для 1 058 332 звёзд. К настоящему времени соб-ственные движения определены более чем у 1 млн. звёзд, причём более 20 000 измерений выполнено астрономами Пул-ковской и Ташкентской об-серваторий. Лучевые скорости известны примерно у 40 000 звёзд. Собственные движения по-давляющего большинства звёзд исчисляются десятыми и соты-ми долями угловой секунды и лишь у очень близких звёзд превосходят 1". Так, самое высокое значение собственного движения имеет «летящая» Звезда Барнарда - 10.358″. Вторую и третью строчку в рейтинге самых быстро перемещающихся звёзд на небесной сфере занимают Звезда Каптейна (8.670″/год) и Лакайль 9352 (6.896″/год). В виде примера найдём расстояние, параллакс, собственное движение, компоненты скорости и блеск Сириуса в эпоху его наибольшего сближения с Солнцем. Необходимые для этого сведения возьмём из «Атласа звёздного неба 2000.0»: в нашу эпоху у Сириуса блеск -1,46 m , годичный параллакс 0,379", собствен-ное движение 1,34" и лучевая скорость V r = -8 км/с. Прежде всего найдём тангенциальную скорость Сириуса

Его пространственную скорость

И его направление через

Откуда θ = -64,5º, что говорит о сближении Сириуса с Солнцем (поло-жительный знак угла означал бы удаление). Тогда абсолютные значения cos θ = 0,431 и sin θ =sin 64,5°=0,902. Теперь построим чертёж (см. рисунок), показывающий направление простран-ственного движения звезды (S), и на это направление опустим из изображения Солнца перпендикуляр, который укажет положение звезды (S 1) и ее расстояние (r 1) от Солнца в эпоху наибольшего сближения. К этой эпохе звезда пройдёт в пространстве путь и т. к. её нынешнее расстояние то этот путь она пройдёт за Через этот длинный промежуток времени Сириус пройдёт мимо Солнца на расстоянии его годичный параллакс будет
лучевая скорость Vr, =0 (направление пространственной скорости V перпенди-кулярно лучу зрения r 1), тангенциальная скорость V t ,= V =18.6 км/с и собствен-ное движение
Поскольку блеск обратно пропорционален квадрату расстояния, то блеск Сириуса возрастёт в и, согласно формуле Погсона будет равен . Такие задачи на сближение с Солнцем или на удаление от него можно решать для всех звёзд с известными исходными данными, которые можно взять из звёздных каталогов или из справочных пособий. Исследуя движения близких звёзд относительно солнца, мы можем найти звёзды, которые могли испытать в прошлом или, возможно, испытают в будущем сближение с Солнечной системой в пределах внешнего облака Оорта, то есть с минимальным расстоянием r min от Солнца менее 206265 астрономических единиц (1 парсека). Данные о таких звёздах представлены в таблице ниже. В таблице приведены номер звезды по каталогу Глизе и Ярайса, название звезды, её спектральный тип, масса, минимальное расстояние между Солнцем и звездой, момент времени сближения по отношению к современной эпохе. Заметим, что из семи приведённых звёзд шесть испытают сближение с Солнечной системой в будущем и лишь одна звезда - в прошлом (около 500000 лет тому назад). Интересно, что четыре сближения произойдут в течение ближайших 50000 лет. Эти сближения могут вызвать обильные кометные ливни из внешней части облака Оорта в пределы планетной системы, что, в свою очередь, увеличивает вероятность столкновения с кометным ядром. Таким образом, кометные ливни могут приводить к экологическим катастрофам и массовым вымираниям организмов.

Звёзды, сближающиеся с Солнцем

Название

Спектральный

t min , годы

Изучив собственные движе-ния звёзд какого-либо созвез-дия, можно представить себе его вид в далёком прошлом и будущем. В частности, изменение вида созвездия Большой Медведицы показано на рисун-ке слева: а – 100 тыс. лет назад, б – наши дни, в – через 100 тыс. лет. Изучение собственных дви-жений звёзд помогло обнару-жить движение Солнечной системы в пространстве. Впер-вые эту задачу решил В. Гершель в 1783 г., использовав собственные движения всего лишь 7 звёзд, а несколько позже-13 звёзд. Он нашёл, что Солнце вместе со всем множеством тел, обращающих-ся вокруг него, движется в направлении к звезде λ Гер-кулеса (4,5 m). Точку неба, в направлении которой проис-ходит это движение, Гершель назвал солнечным апексом (от лат. apex - вершина). В дальнейшем астрономы неоднократно определяли по-ложение солнечного апекса по большому числу звёзд с из-вестными собственными дви-жениями. При этом они осно-вывались на том, что если бы Солнечная система покоилась в пространстве, то собственные движения звёзд во всех облас-тях неба имели бы самые раз-личные направления. В дейст-вительности же в области со-звездий Лиры и Геркулеса собственные движения боль-шинства звёзд направлены так, что создается впечатление, буд-то звезды разбегаются в раз-ные стороны. В диаметрально противоположной области неба, в созвездиях Большого Пса, Зайца и Голубя собственные движения большинства звёзд направлены примерно друг к другу, т. е. звёзды как бы сближаются между собой. Эти явления объяснимы лишь движением Солнечной системы в пространстве в направлении к созвездиям Лиры и Геркулеса. Действительно, каждый наблю-дал, что во время движения окружающие предметы, види-мые в направлении движения, как бы расступаются перед нами, а находящиеся позади - смыкаются. В 20-х годах XX столе-тия началось массовое вы-числение лучевых скоростей звёзд относительно Солнца. Это дало возможность не только определить положение солнечного апекса, но и узнать скорость движения Солнечной системы в пространстве. Круп-ные исследования в этом на-правлении были проведены в 1923-1936 гг. в астрономи-ческих обсерваториях несколь-ких стран, в том числе в 1923- 1925 гг. московскими астро-номами под руководством В. Г. Фесенкова. Исследова-ния показали, что у большин-ства звёзд, расположенных вблизи солнечного апекса, лу-чевая скорость близка к -20 км/с, т. е. эти звёзды приближаются к Солнцу, а звёзды, находящиеся в про-тивоположной области неба, удаляются от Солнца со ско-ростью около +20 км/с. Со-вершенно очевидно, что эта скорость свойственна самой Солнечной системе. В настоящее время установлено, что Солнечная система движется относительно окружающих её звёзд со скоростью около 20 км/с (по другим данным 25 км/с) в направлении к солнечному апексу, расположенному вблизи слабой звезды ν Геркулеса (m=4,5) недалеко от границы этого созвездия с созвездием Лиры. При этом Солнечная система ещё обращается вокруг центра Галактики с периодом 226 млн лет и со скоростью 260 км/с.Экваториальные коор-динаты солнечного апекса: прямое восхождение α А =270° (18 ч 00 м) и склонение δ А = = +30°. Собственные движения по-могают установить у некото-рых звёзд наличие планет. Смещение одиночных звёзд происходит, как иногда гово-рят, по «прямой линии» (на самом деле - по дуге боль-шого круга, незначительную часть которой часто принима-ют за отрезок прямой). Но если вокруг звезды обращается сравнительно массивный спутник, то он периодически отклоняет ее движение пооче-редно в обе стороны от дуги большого круга и тогда види-мое смещение звезды происхо-дит по слегка волнистой линии (рис.). В 1844 г. немецкий астро-ном Ф. Бессель (1784-1846) обнаружил такие отклонения в смещениях Сириуса и Проциона и предсказал существо-вание у них невидимых мас-сивных спутников. А почти через 18 лет, 31 января 1862 г., американский оптик А. Кларк, испытывая изготовленный им линзовый объектив диаметром 46 см, обнаружил спутник Сириуса - звезду 8,4 m , отсто-ящую от главной звезды на 7,6". В 1896 г. Дж. Шеберле открыл в 4,6" от Проциона его спутник - звезду 10,8 m . Оба спутника, как выяснилось впос-ледствии, оказались белыми карликами. Невидимые спутники-планеты имеют-ся и у Летящей звезды Бар-нарда, но они пока не откры-ты. Всего сейчас известно более 300 звёзд, во-круг которых обращаются планетоподобные спутники. Литература:

  • Тема. Малые тела Солнечной системы

    Краткое содержание

    Понятия: малые тела Солнечной системы, астероиды, астероидные тела, метеоры, метеориты, кометы, карликовые планеты, пояс Койпера, главный пояс астероидов, облако Орта, метеороидные тела.

  • Проект «Земля планета солнечной системы»

    Документ

    во льдах(Многие ученые полагают, что присутствующий в атмосфере углекислый газ обеспечивал поддержание тепличных условий, другие считают, что на Земле господствовала зима).

  • 8:36 12/02/2018

    1 👁 1 335

    Наверняка, многие из вас видели гифку или смотрели видео, показывающее движение .

    Ролик, вышедший в 2012 году, стал вирусным и наделал много шума. Мне он попался вскоре после его появления, когда я знал о космосе гораздо меньше, чем сейчас. И больше всего меня смутила перпендикулярность плоскости направлению движения. Не то, чтобы это было невозможно, но Солнечная система может двигаться под любым углом к плоскости . Вы спросите, зачем вспоминать давно забытые истории? Дело в том, что именно сейчас, при желании и наличии хорошей погоды, каждый может увидеть на небе настоящий угол между плоскостями эклиптики и Галактики.

    Проверяем ученых

    Астрономия говорит, что угол между и Галактики составляет 63°.

    Но сама по себе цифра скучна, да и сейчас, когда на обочине науки устраивают шабаш адепты плоской , хочется иметь простую и наглядную иллюстрацию. Давайте подумаем, как мы можем увидеть плоскости Галактики и эклиптики на небе, желательно невооруженным взглядом и не отдаляясь далеко от города? Плоскость Галактики – это , но сейчас, с изобилием светового загрязнения, увидеть его не так просто. Есть ли какая-то линия, примерно близкая к плоскости Галактики? Есть – это . Оно хорошо видно даже в городе, а найти его просто, опираясь на яркие звезды: Денеб (альфа Лебедя), Вегу (альфа Лиры) и Альтаир (альфа Орла). “Туловище” Лебедя примерно совпадает с галактической плоскостью.

    Хорошо, одна плоскость у нас есть. Но как получить наглядную линию эклиптики? Давайте подумаем, что такое вообще эклиптика? По современному строгому определению эклиптика – это сечение небесной сферой плоскости орбиты барицентра (центра массы) Земля- . По эклиптике в среднем движется , но у нас нет двух Солнц, по которым удобно построить линию, да и созвездие Лебедя при солнечном свете не будет видно. Но если вспомнить, что планеты Солнечной системы тоже движутся приблизительно в той же плоскости, то, получается, что парад планет как раз примерно покажет нам плоскость эклиптики. И сейчас в утреннем небе как раз можно наблюдать , и .

    В результате, в ближайшие недели утром до восхода Солнца можно будет очень наглядно видеть вот такую картину:

    Которая, как это ни удивительно, прекрасно согласуется с учебниками астрономии.

    Гифка

    Вопрос может вызвать взаимное положение плоскостей. Летим ли мы <-/ или же <-\ (если смотреть с внешней стороны Галактики, северный полюс вверху)? Астрономия говорит, что Солнечная система движется относительно ближайших звезд в направлении созвездия Геркулеса, в точку, расположенную недалеко от Веги и Альбирео (бета Лебедя), то есть правильное положение <-/.

    Но этот факт, увы, “на пальцах” не проверить, потому что, пусть и сделали это двести тридцать пять лет назад, но использовали результаты многолетних астрономических наблюдений и математику.

    Разбегающиеся звезды

    Как вообще можно определить, куда движется Солнечная система относительно близких ? Если мы можем на протяжении десятков лет фиксировать перемещение звезды по небесной сфере, то направление движения нескольких звезд скажет нам, куда мы движемся относительно них. Назовем точку, в которую мы движемся, апексом. Звезды, которые находятся недалеко от него, а также от противоположной точки (антиапекса), будут двигаться слабо, потому что они летят на нас или от нас. А чем дальше звезда находится от апекса и антиапекса, тем больше будет ее собственное движение. Представьте, что вы едете по дороге. Светофоры на перекрестках впереди и позади не будут сильно смещаться в стороны. А вот фонарные столбы вдоль дороги так и будут мелькать (иметь большое собственное движение) за окном.

    Перемещение звезды Барнарда, имеющей самое большое собственное движение. Уже в 18 веке у астрономов появились записи положения звезд на промежутке в 40-50 лет, которые позволили определить направление движения более медленных звезд. Тогда английский астроном Уильям Гершель взял звездные каталоги и, не подходя к телескопу, стал вычислять. Уже первые расчеты по каталогу Майера показали, что звезды движутся не хаотично, и апекс можно определить.

    Гершель использовал правильный принцип и ошибся всего на десять градусов. Информацию собирают до сих пор, например, всего тридцать лет назад скорость движения уменьшили с 20 до 13 км/с. Важно: эту скорость нельзя путать со скоростью солнечной системы и других ближайших звезд относительно центра Галактики, которая равна примерно 220 км/с.

    Ну и, раз мы упомянули скорость движения относительно центра Галактики, необходимо разобраться и тут. Галактический северный полюс выбран так же, как и земной – произвольно по соглашению. Он находится недалеко от звезды Арктур (альфа Волопаса), примерно вверх по направлению крыла созвездия Лебедя. А в целом проекция созвездий на карту Галактики выглядит так:

    Т.е. Солнечная система движется относительно центра Галактики в направлении созвездия Лебедя, а относительно местных звезд в направлении созвездия Геркулеса, под углом 63° к галактической плоскости, <-/, если смотреть с внешней стороны Галактики, северный полюс сверху.

    А вот сравнение Солнечной системы с кометой в видео совершенно корректно. Аппарат NASA IBEX был специально создан для определения взаимодействия границы Солнечной системы и межзвездного пространства. И по его данным хвост есть.

    Позитив напоследок

    Завершая разговор, стоит отметить очень позитивную историю. Создавший в 2012 году исходное видео DJSadhu первоначально продвигал что-то ненаучное. Но, благодаря вирусному распространению клипа, он пообщался с настоящими астрономами (астрофизик Rhys Tailor очень позитивно отзывается о диалоге) и, спустя три года, сделал новый, гораздо более соответствующий реальности ролик без антинаучных построений.