Найти угол между прямой и плоскостью

Пусть задана некоторая прямоугольная система координат и прямая. Пустьи две различные плоскости, пересекающиеся по прямой и задаваемые соответственно уравнениямии. Эти два уравнения совместно определяют прямуюв том и только в том случае, когда они не параллельны и не совпадают друг с другом, т. е. нормальные векторы
и
этих плоскостей не коллинеарны.

Определение. Есликоэффициенты уравнений

не пропорциональны, то эти уравнения называются общими уравнениями прямой, определяемой как линия пересечения плоскостей.

Определение. Любой ненулевой вектор, параллельный прямой, называется направляющим вектором этой прямой.

Выведем уравнение прямой , проходящей через данную точку
пространства и имеющей заданный направляющий вектор
.

Пусть точка
 произвольная точка прямой . Эта точка лежит на прямой тогда и только тогда, когда вектор
, имеющий координаты
, коллинеарен направляющему вектору
прямой. Согласно (2.28) условие коллинеарности векторов
иимеет вид

. (3.18)

Уравнения (3.18) называются каноническими уравнениями прямой, проходящей через точку
и имеющей направляющий вектор
.

Если прямая задана общими уравнениями (3.17), то направляющий векторэтой прямой ортогонален нормальным векторам
и
плоскостей, задаваемых уравнениямии. Вектор
по свойству векторного произведения ортогонален каждому из векторови. Согласно определению в качестве направляющего векторапрямойможно взять вектор
, т. е.
.

Для нахождения точки
рассмотрим систему уравнений
. Так как плоскости, определяемые уравнениямии, не параллельны и не совпадают, то не выполняется хотя бы одно из равенств
. Это приводит к тому, что хотя бы один из определителей,
,
отличен от нуля. Для определенности будем считать, что
. Тогда, взяв произвольное значение, получим систему уравнений относительно неизвестныхи:

.

По теореме Крамера эта система имеет единственное решение, определяемое формулами

,
. (3.19)

Если взять
, то прямая, задаваемая уравнениями (3.17), проходит через точку
.

Таким образом, для случая, когда
, канонические уравнения прямой (3.17) имеют вид

.

Аналогично записываются канонические уравнения прямой (3.17) для случая, когда отличен от нуля определитель
или
.

Если прямая проходит через две различные точки
и
, то ее канонические уравнения имеют вид

. (3.20)

Это следует из того, что прямая проходит через точку
и имеет направляющий вектор.

Рассмотрим канонические уравнения (3.18) прямой. Примем каждое из отношений за параметр , т. е.
. Один из знаменателей этих дробей отличен от нуля, а соответствующий числитель может принимать любые значения, поэтому параметрможет принимать любые вещественные значения. Учитывая, что каждое из отношений равно, получимпараметрические уравнения прямой:

,
,
. (3.21)

Пусть плоскость задана общим уравнением, а прямая параметрическими уравнениями
,
,
. Точка
пересечения прямойи плоскостидолжна одновременно принадлежать плоскости и прямой. Это возможно только в том случае, когда параметрудовлетворяет уравнению, т. е.
. Таким образом, точка пересечения прямой и плоскости имеет координаты

,

,

.

П р и м е р 32. Составить параметрические уравнения прямой, проходящей через точки
и
.

Решение. За направляющий вектор прямой возьмем вектор

. Прямая проходит через точку, поэтому по формуле (3.21) искомые уравнения прямой имеют вид
,
,
.

П р и м е р 33. Вершины треугольника
имеют координаты
,
и
соответственно. Составить параметрические уравнения медианы, проведенной из вершины.

Решение. Пусть
 середина стороны
, тогда
,
,
. В качестве направляющего вектора медианы возьмем вектор
. Тогда параметрические уравнения медианы имеют вид
,
,
.

П р и м е р 34. Составить канонические уравнения прямой, проходящей через точку
параллельно прямой
.

Решение. Прямая задана как линия пересечения плоскостей с нормальными векторами
и
. В качестве направляющего вектораэтой прямой возьмем вектор
, т. е.
. Согласно (3.18) искомое уравнение имеет вид
или
.

3.8. Угол между прямыми в пространстве. Угол между прямой и плоскостью

Пусть две прямые ив пространстве заданы своими каноническими уравнениями
и
. Тогда один из угловмежду этими прямыми равен углу между их направляющими векторами
и
. Воспользовавшись формулой (2.22), для определения углаполучим формулу

. (3.22)

Второй угол между этими прямыми равен
и
.

Условие параллельности прямых иравносильно условию коллинеарности векторов
и
и заключается в пропорциональности их координат, т. е. условие параллельности прямых имеет вид

. (3.23)

Если прямые иперпендикулярны, то их направляющие векторы ортогональны, т.е. условие перпендикулярности определяется равенством

. (3.24)

Рассмотрим плоскость , заданную общим уравнением, и прямую, заданную каноническими уравнениями
.

Угол между прямойи плоскостьюявляется дополнительным к углумежду направляющим вектором прямой и нормальным вектором плоскости, т. е.
и
, или

. (3.24)

Условие параллельности прямой и плоскостиэквивалентно условию перпендикулярности направляющего вектора прямой и нормального вектора плоскости, т. е. скалярное произведение этих векторов должно равняться нулю:

Если же прямая перпендикулярна плоскости, то направляющий вектор прямой и нормальный вектор плоскости должны быть коллинеарны. В этом случае координаты векторов пропорциональны, т. е.

. (3.26)

П р и м е р 35. Найти тупой угол между прямыми
,
,
и
,
,
.

Решение. Направляющие векторы этих прямых имеют координаты
и
. Поэтому один уголмежду прямыми определяется соотношением, т. е.
. Поэтому условию задачи удовлетворяет второй угол между прямыми, равный
.

3.9. Расстояние от точки до прямой в пространстве

Пусть
 точка пространства с координатами
, прямая, заданная каноническими уравнениями
. Найдем расстояниеот точки
до прямой.

Приложим направляющий вектор
к точке
. Расстояниеот точки
до прямойявляется высотой параллелограмма, построенного на векторахи
. Найдем площадь параллелограмма, используя векторное произведение:

С другой стороны, . Из равенства правых частей двух последних соотношений следует, что

. (3.27)

3.10. Эллипсоид

Определение. Эллипсоидом называется поверхность второго порядка, которая в некоторой системе координат определяется уравнением

. (3.28)

Уравнение (3.28) называется каноническим уравнением эллипсоида.

Из уравнения (3.28) следует, что координатные плоскости являются плоскостями симметрии эллипсоида, а начало координат  центром симметрии. Числа
называются полуосями эллипсоида и представляют собой длины отрезков от начала координат до пересечения эллипсоида с осями координат. Эллипсоид представляет собой ограниченную поверхность, заключенную в параллелепипеде
,
,
.

Установим геометрический вид эллипсоида. Для этого выясним форму линий пересечения его плоскостями, параллельными координатным осям.

Для определенности рассмотрим линии пересечения эллипсоида с плоскостями
, параллельными плоскости
. Уравнение проекции линии пересечения на плоскость
получается из (3.28), если в нем положить
. Уравнение этой проекции имеет вид

. (3.29)

Если
, то (3.29) является уравнением мнимого эллипса и точек пересечения эллипсоида с плоскостью
нет. Отсюда и следует, что
. Если
, то линия (3.29) вырождается в точки, т. е. плоскости
касаются эллипсоида в точках
и
. Если
, то
и можно ввести обозначения

,
. (3.30)

Тогда уравнение (3.29) принимает вид

, (3.31)

т. е. проекция на плоскость
линии пересечения эллипсоида и плоскости
представляет собой эллипс с полуосями, которые определяются равенствами (3.30). Так как линия пересечения поверхности плоскостями, параллельными координатным, представляет собой проекцию, «поднятую» на высоту, то и сама линия пересечения является эллипсом.

При уменьшении значенияполуосииувеличиваются и достигают своего наибольшего значения при
, т. е. в сечении эллипсоида координатной плоскостью
получается самый большой эллипс с полуосями
и
.

Представление об эллипсоиде можно получить и другим образом. Рассмотрим на плоскости
семейство эллипсов (3.31) с полуосямии, определяемыми соотношениями (3.30) и зависящими от. Каждый такой эллипс является линией уровня, т. е. линией, в каждой точке которой значениеодинаково. «Подняв» каждый такой эллипс на высоту, получим пространственный вид эллипсоида.

Аналогичная картина получается и при пересечении данной поверхности плоскостями, параллельными координатным плоскостям
и
.

Таким образом, эллипсоид представляет собой замкнутую эллиптическую поверхность. В случае
эллипсоид является сферой.

Линия пересечения эллипсоида с любой плоскостью является эллипсом, так как такая линия представляет собой ограниченную линию второго порядка, а единственная ограниченная линия второго порядка  эллипс.

Понятие проекции фигуры на плоскость

Для введения понятия угла между прямой и плоскостью вначале необходимо разобраться в таком понятии, как проекция произвольной фигуры на плоскость.

Определение 1

Пусть нам дана произвольная точка $A$. Точка $A_1$ называется проекцией точки $A$ на плоскость $\alpha $, если она является основанием перпендикуляра, проведенного из точки $A$ на плоскость $\alpha $ (рис. 1).

Рисунок 1. Проекция точки на плоскость

Определение 2

Пусть нам дана произвольная фигура $F$. Фигура $F_1$ называется проекцией фигуры $F$ на плоскость $\alpha $, составленная из проекций всех точек фигуры $F$ на плоскость $\alpha $ (рис. 2).

Рисунок 2. Проекция фигуры на плоскость

Теорема 1

Проекция не перпендикулярной плоскости прямой является прямая.

Доказательство.

Пусть нам дана плоскость $\alpha $ и пересекающая ее прямая $d$, не перпендикулярная ей. Выберем на прямой $d$ точку $M$ и проведем её проекцию $H$ на плоскость $\alpha $. Через прямую $(MH)$ проведем плоскость $\beta $. Очевидно, что эта плоскость будет перпендикулярна плоскости $\alpha $. Пусть они пересекаются по прямой $m$. Рассмотрим произвольную точку $M_1$ прямой $d$ и проведем через нее прямую $(M_1H_1$) параллельно прямой $(MH)$ (рис. 3).

Рисунок 3.

Так как плоскость $\beta $ перпендикулярна плоскости $\alpha $, то $M_1H_1$ перпендикулярно прямой $m$, то есть точка $H_1$ - проекция точки $M_1$ на плоскость $\alpha $. В силу произвольности выбора точки $M_1$ все точки прямой $d$ проецируются на прямую $m$.

Рассуждая аналогично. В обратном порядке, будем получать, что каждая точка прямой $m$ является проекцией какой-либо точки прямой $d$.

Значит, прямая $d$ проецируется на прямую $m$.

Теорема доказана.

Понятие угла между прямой и плоскостью

Определение 3

Угол между прямой, пересекающей плоскость и её проекцией на эту плоскость, называется углом между прямой и плоскостью (рис. 4).

Рисунок 4. Угол между прямой и плоскостью

Отметим здесь несколько замечаний.

Замечание 1

Если прямая перпендикулярна к плоскости. То угол между прямой и плоскостью равен $90^\circ$.

Замечание 2

Если прямая параллельна или лежит в плоскости. То угол между прямой и плоскостью равен $0^\circ$.

Примеры задач

Пример 1

Пусть нам дан параллелограмм $ABCD$ и точка $M$, не лежащая в плоскости параллелограмма. Доказать, что треугольники $AMB$ и $MBC$ являются прямоугольными, если точка $B$ -- проекция точки $M$ на плоскость параллелограмма.

Доказательство.

Изобразим условие задачи на рисунке (рис. 5).

Рисунок 5.

Так как точка $B$ -- проекция точки $M$ на плоскость $(ABC)$, то прямая $(MB)$ перпендикулярна плоскости $(ABC)$. По замечанию 1, получаем, что угол между прямой $(MB)$ и плоскостью $(ABC)$ равен $90^\circ$. Следовательно

\[\angle MBC=MBA={90}^0\]

Значит, треугольники $AMB$ и $MBC$ являются прямоугольными.

Пример 2

Дана плоскость $\alpha $. Под углом $\varphi $ к этой плоскости проведен отрезок, начало которого лежит в данной плоскости. Проекция этого отрезка в два раза меньше самого отрезка. Найти величину $\varphi $.

Решение.

Рассмотрим рисунок 6.

Рисунок 6.

По условию, имеем

Так как треугольник $BCD$ прямоугольный, то, по определению косинуса

\ \[\varphi =arccos\frac{1}{2}={60}^0\]

\(\blacktriangleright\) Угол между прямой и плоскостью – это угол между прямой и ее проекцией на эту плоскость (т.е. это угол \(0\leqslant \alpha\leqslant 90^\circ\) ).

\(\blacktriangleright\) Чтобы найти угол между прямой \(a\) и плоскостью \(\phi\) (\(a\cap\phi=B\) ), нужно:

Шаг 1: из какой-то точки \(A\in a\) провести перпендикуляр \(AO\) на плоскость \(\phi\) (\(O\) – основание перпендикуляра);

Шаг 2: тогда \(BO\) – проекция наклонной \(AB\) на плоскость \(\phi\) ;

Шаг 3: тогда угол между прямой \(a\) и плоскостью \(\phi\) равен \(\angle ABO\) .

Задание 1 #2850

Уровень задания: Сложнее ЕГЭ

Прямая \(l\) пересекает плоскость \(\alpha\) . На прямой \(l\) отмечен отрезок \(AB=25\) , причем известно, что проекция этого отрезка на плоскость \(\alpha\) равна \(24\) . Найдите синус угла между прямой \(l\) и плоскостью \(\alpha\)

Рассмотрим рисунок:

Пусть \(A_1B_1=24\) – проекция \(AB\) на плоскость \(\alpha\) , значит, \(AA_1\perp \alpha\) , \(BB_1\perp \alpha\) . Так как две прямые, перпендикулярные к плоскости, лежат в одной плоскости, то \(A_1ABB_1\) – прямоугольная трапеция. Проведем \(AH\perp BB_1\) . Тогда \(AH=A_1B_1=24\) . Следовательно, по теореме Пифагора \ Заметим также, что угол между прямой и плоскостью – это угол между прямой и ее проекцией на плоскость, следовательно, искомый угол – угол между \(AB\) и \(A_1B_1\) . Так как \(AH\parallel A_1B_1\) , то угол между \(AB\) и \(A_1B_1\) равен углу между \(AB\) и \(AH\) .
Тогда \[\sin\angle BAH=\dfrac{BH}{AB}=\dfrac7{25}=0,28.\]

Ответ: 0,28

Задание 2 #2851

Уровень задания: Сложнее ЕГЭ

\(ABC\) – правильный треугольник со стороной \(3\) , \(O\) – точка, лежащая вне плоскости треугольника, причем \(OA=OB=OC=2\sqrt3\) . Найдите угол, который образуют прямые \(OA, OB, OC\) с плоскостью треугольника. Ответ дайте в градусах.

Проведем перпендикуляр \(OH\) на плоскость треугольника.

Рассмотрим \(\triangle OAH, \triangle OBH, \triangle OCH\) . Они являются прямоугольными и равны по катету и гипотенузе. Следовательно, \(AH=BH=CH\) . Значит, \(H\) – точка, находящаяся на одинаковом расстоянии от вершин треугольника \(ABC\) . Следовательно, \(H\) – центр описанной около него окружности. Так как \(\triangle ABC\) – правильный, то \(H\) – точка пересечения медиан (они же высоты и биссектрисы).
Так как угол между прямой и плоскостью – это угол между прямой и ее проекцией на эту плоскость, а \(AH\) – проекция \(AO\) на плоскость треугольника, то угол между \(AO\) и плоскостью треугольника равен \(\angle OAH\) .
Пусть \(AA_1\) – медиана в \(\triangle ABC\) , следовательно, \ Так как медианы точкой пересечения делятся в отношении \(2:1\) , считая от вершины, то \ Тогда из прямоугольного \(\triangle OAH\) :\[\cos OAH=\dfrac{AH}{AO}=\dfrac12\quad\Rightarrow\quad \angle OAH=60^\circ.\]

Заметим, что из равенства треугольников \(OAH, OBH, OCH\) следует, что \(\angle OAH=\angle OBH=\angle OCH=60^\circ\) .

Ответ: 60

Задание 3 #2852

Уровень задания: Сложнее ЕГЭ

Прямая \(l\) перпендикулярна плоскости \(\pi\) . Прямая \(p\) не лежит в плоскости \(\pi\) и не параллельна ей, также не параллельна прямой \(l\) . Найдите сумму углов между прямыми \(p\) и \(l\) и между прямой \(p\) и плоскостью \(\pi\) . Ответ дайте в градусах.

Из условия следует, что прямая \(p\) пересекает плоскостью \(\pi\) . Пусть \(p\cap l=O\) , \(l\cap \pi=L\) , \(p\cap\pi=P\) .

Тогда \(\angle POL\) – угол между прямыми \(p\) и \(l\) .
Так как угол между прямой и плоскостью – угол между прямой и ее проекцией на эту плоскость, то \(\angle OPL\) – угол между \(p\) и \(\pi\) . Заметим, что \(\triangle OPL\) прямоугольный с \(\angle L=90^\circ\) . Так как сумма острых углов прямоугольного треугольника равна \(90^\circ\) , то \(\angle POL+\angle OPL=90^\circ\) .

Замечание.
Если прямая \(p\) не пересекает прямую \(l\) , то проведем прямую \(p"\parallel p\) , пересекающую \(l\) . Тогда угол между прямой \(p\) и \(l\) будет равен углу между \(p"\) и \(l\) . Аналогично угол между \(p\) и \(\pi\) будет равен углу между \(p"\) и \(\pi\) . А для прямой \(p"\) уже верно предыдущее решение.

Ответ: 90

Задание 4 #2905

Уровень задания: Сложнее ЕГЭ

\(ABCDA_1B_1C_1D_1\) – куб. Точка \(N\) – середина ребра \(BB_1\) , а точка \(M\) – середина отрезка \(BD\) . Найдите \(\mathrm{tg}^2\, \alpha\) , где \(\alpha\) – угол между прямой, содержащей \(MN\) , и плоскостью \((A_1B_1C_1D_1)\) . Ответ дайте в градусах.


\(NM\) – средняя линия в треугольнике \(DBB_1\) , тогда \(NM \parallel B_1D\) и \(\alpha\) равен углу между \(B_1D\) и плоскостью \((A_1B_1C_1D_1)\) .

Так как \(DD_1\) – перпендикуляр к плоскости \(A_1B_1C_1D_1\) , то \(B_1D_1\) проекция \(B_1D\) на плоскость \((A_1B_1C_1D_1)\) и угол между \(B_1D\) и плоскостью \((A_1B_1C_1D_1)\) есть угол между \(B_1D\) и \(B_1D_1\) .

Пусть ребро куба \(x\) , тогда по теореме Пифагора \ В треугольнике \(B_1D_1D\) тангенс угла между \(B_1D\) и \(B_1D_1\) равен \(\mathrm{tg}\,\angle DB_1D_1=\dfrac{DD_1}{B_1D_1} = \dfrac{1}{\sqrt{2}}=\mathrm{tg}\,\alpha\) , откуда \(\mathrm{tg}^2\, \alpha = \dfrac{1}{2}\) .

Ответ: 0,5

Задание 5 #2906

Уровень задания: Сложнее ЕГЭ

\(ABCDA_1B_1C_1D_1\) – куб. Точка \(N\) – середина ребра \(BB_1\) , а точка \(M\) делит отрезок \(BD\) в отношении \(1:2\) , считая от вершины \(B\) . Найдите \(9\mathrm{ctg}^2\, \alpha\) , где \(\alpha\) – угол между прямой, содержащей \(MN\) , и плоскостью \((ABC)\) . Ответ дайте в градусах.


Так как \(NB\) – часть \(BB_1\) , а \(BB_1\perp (ABC)\) , то и \(NB\perp (ABC)\) . Следовательно, \(BM\) – проекция \(NM\) на плоскость \((ABC)\) . Значит, угол \(\alpha\) равен \(\angle NMB\) .

Пусть ребро куба равно \(x\) . Тогда \(NB=0,5x\) . По теореме Пифагора \(BD=\sqrt{x^2+x^2}=\sqrt2x\) . Так как по условию \(BM:MD=1:2\) , то \(BM=\frac13BD\) , следовательно, \(BM=\frac{\sqrt2}3x\) .

Тогда из прямоугольного \(\triangle NBM\) : \[\mathrm{ctg}\,\alpha=\mathrm{ctg}\,\angle NMB=\dfrac{BM}{NB}=\dfrac{2\sqrt2}3 \quad\Rightarrow\quad 9\mathrm{ctg}^2\,\alpha=8.\]

Ответ: 8

Задание 6 #2907

Уровень задания: Сложнее ЕГЭ

Чему равен \(\mathrm{ctg^2}\,\alpha\) , если \(\alpha\) – угол наклона диагонали куба к одной из его граней?


Искомый угол будет совпадать с углом между диагональю куба и диагональю любой его грани, т.к. в данном случае диагональ куба будет являться наклонной, диагональ грани – проекцией этой наклонной на плоскость грани. Таким образом, искомый угол будет равен, например, углу \(C_1AC\) . Eсли обозначить ребро куба за \(x\) , то \(AC=\sqrt{x^2+x^2}=\sqrt2 x\) , тогда квадрат котангенса искомого угла: \[\mathrm{ctg^2}\,\alpha =(AC:CC_1)^2= (\sqrt2 x:x)^2 = 2.\]

Ответ: 2

Задание 7 #2849

Уровень задания: Сложнее ЕГЭ

\(\angle BAH=\angle CAH=30^\circ\) .
По теореме Пифагора \ Следовательно, \[\cos 30^\circ=\dfrac{AB}{AH}\quad\Rightarrow\quad AH=\dfrac{AB}{\cos 30^\circ}=2.\] Так как \(OH\perp (ABC)\) , то \(OH\) перпендикулярно любой прямой из этой плоскости, значит, \(\triangle OAH\) – прямоугольный. Тогда \[\cos \angle OAH=\dfrac{AH}{AO}=\dfrac25=0,4.\]

Ответ: 0,4

Учащимся старших классов на этапе подготовки к ЕГЭ по математике будет полезно научиться справляться с заданиями из раздела «Геометрия в пространстве», в которых требуется найти угол между прямой и плоскостью. Опыт прошлых лет показывает, что подобные задачи вызывают у выпускников определенные сложности. При этом знать базовую теорию и понимать, как найти угол между прямой и плоскостью, должны старшеклассники с любым уровнем подготовки. Только в этом случае они смогут рассчитывать на получение достойных баллов.

Основные нюансы

Как и другие стереометрические задачи ЕГЭ, задания, в которых требуется найти углы и расстояния между прямыми и плоскостями, могут быть решены двумя методами: геометрическим и алгебраическим. Учащиеся могут выбрать наиболее удобный для себя вариант. Согласно геометрическому методу, необходимо найти на прямой подходящую точку, опустить из нее перпендикуляр на плоскость и построить проекцию. После этого выпускнику останется применить базовые теоретические знания и решить планиметрическую задачу на вычисление угла. Алгебраический метод предполагает введение системы координат для нахождения искомой величины. Необходимо определить координаты двух точек на прямой, правильно составить уравнение плоскости и решить его.

Эффективная подготовка вместе со «Школково»

Чтобы занятия проходили легко и даже сложные задания не вызывали затруднений, выбирайте наш образовательный портал. Здесь представлен весь необходимый материал для успешной сдачи аттестационного испытания. Нужную базовую информацию вы найдете в разделе «Теоретическая справка». А для того чтобы попрактиковаться в выполнении заданий, достаточно перейти в «Каталог» на нашем математическом портале. В этом разделе собрана большая подборка упражнений разной степени сложности. В «Каталоге» регулярно появляются новые задания.

Выполнять задачи на нахождение угла между прямой и плоскостью или на , российские школьники могут в режиме онлайн, находясь в Москве или другом городе. По желанию учащегося любое упражнение можно сохранить в «Избранное». Это позволит при необходимости быстро его найти и обсудить ход его решения с преподавателем.

Статья начинается с определение угла между прямой и плоскостью. В данной статье будет показано нахождение угла между прямой и плоскостью методом координат. Подробно будут рассмотрены решение примеров и задач.

Yandex.RTB R-A-339285-1

Предварительно необходимо повторить понятие о прямой линии в пространстве и понятие плоскости. Для определения угла между прямой и плоскостью необходимый несколько вспомогательных определений. Рассмотрим эти определения подробно.

Определение 1

Прямая и плоскость пересекаются в том случае, когда они имеют одну общую точку, то есть она является точкой пересечения прямой и плоскости.

Прямая, пересекающая плоскость, может являться перпендикулярной относительно плоскости.

Определение 2

Прямая является перпендикулярной к плоскости , когда она перпендикулярна любой прямой, находящейся в этой плоскости.

Определение 3

Проекция точки M на плоскость γ является сама точка, если она лежит в заданной плоскости, либо является точкой пересечения плоскости с прямой, перпендикулярной плоскости γ , проходящей через точку M , при условии, что она не принадлежит плоскости γ .

Определение 4

Проекция прямой а на плоскость γ - это множество проекций всех точек заданной прямой на плоскость.

Отсюда получаем, что перпендикулярная к плоскости γ проекция прямой имеет точку пересечения. Получаем, что проекция прямой a – это прямая, принадлежащая плоскости γ и проходящая через точку пересечения прямой a и плоскости. Рассмотрим на рисунке, приведенном ниже.

На данный момент имеем все необходимые сведения и данные для формулировки определения угла между прямой и плоскостью

Определение 5

Углом между прямой и плоскостью называют угол между этой прямой и ее проекцией на эту плоскость, причем прямая не перпендикулярна к ней.

Определение угла, приведенное выше, помогает прийти к выводу о том, что угол между прямой и плоскостью представляет собой угол между двумя пересекающимися прямыми, то есть заданной прямой вместе с ее проекцией на плоскость. Значит, угол между ними всегда будет острым. Рассмотрим на картинке, приведенной ниже.

Угол, расположенный между прямой и плоскостью, считается прямым, то есть равным 90 градусов, а угол, расположенный между параллельными прямыми, не определяется. Бывают случаи, когда его значение берется равным нулю.

Задачи, где необходимо найти угол между прямой и плоскостью, имеет множество вариация решения. Ход самого решения зависит от имеющихся данных по условию. Частыми спутниками решения являются признаки подобия или равенства фигур, косинусы, синусы, тангенсы углов. Нахождение угла возможно при помощи метода координат. Рассмотрим его более детально.

Если в трехмерном пространстве вводится прямоугольная система координат О х у z , тогда в ней задается прямая a , пересекающая плоскость γ в точке M , причем она не перпендикулярна плоскости. Необходимо найти угол α , находящийся между заданной прямой и плоскостью.

Для начала необходимо применить определение угла между прямой и плоскостью методом координат. Тогда получим следующее.

В системе координат О х у z задается прямая a , которой соответствуют уравнения прямой в пространстве и направляющий вектор прямой пространства, для плоскости γ соответствует уравнение плоскости и нормальный вектор плоскости. Тогда a → = (a x , a y , a z) является направляющим вектором заданной прямой a , а n → (n x , n y , n z) - нормальным вектором для плоскости γ . Если представить, что у нас имеются координаты направляющего вектора прямой a и нормального вектора плоскости γ , тогда известны их уравнения, то есть заданы по условию, тогда есть возможность определения векторов a → и n → , исходя из уравнения.

Для вычисления угла необходимо преобразовать формулу, позволяющую получить значение этого угла при помощи имеющихся координат направляющего вектора прямой и нормального вектора.

Необходимо отложить векторы a → и n → , начиная от точки пересечения прямой a с плоскостью γ . Существуют 4 варианта расположения этих векторов относительно заданных прямых и плоскости. Рассмотри рисунок, приведенный ниже, на котором имеются все 4 вариации.

Отсюда получаем, что угол между векторами a → и n → имеет обозначение a → , n → ^ и является острым, тогда искомый угол α , располагающийся между прямой и плоскостью, дополняется, то есть получаем выражение вида a → , n → ^ = 90 ° - α . Когда по условию a → , n → ^ > 90 ° , тогда имеем a → , n → ^ = 90 ° + α .

Отсюда имеем, что косинусы равных углов являются равными, тогда последние равенства записываются в виде системы

cos a → , n → ^ = cos 90 ° - α , a → , n → ^ < 90 ° cos a → , n → ^ = cos 90 ° + α , a → , n → ^ > 90 °

Необходимо использовать формулы приведения для упрощения выражений. Тогда получим равенства вида cos a → , n → ^ = sin α , a → , n → ^ < 90 ° cos a → , n → ^ = - s i n α , a → , n → ^ > 90 ° .

Проведя преобразования, система приобретает вид sin α = cos a → , n → ^ , a → , n → ^ < 90 ° sin α = - cos a → , n → ^ , a → , n → ^ > 90 ° ⇔ sin α = cos a → , n → ^ , a → , n → ^ > 0 sin α = - cos a → , n → ^ , a → , n → ^ < 0 ⇔ ⇔ sin α = cos a → , n → ^

Отсюда получим, что синус угла между прямой и плоскостью равен модулю косинуса угла между направляющим вектором прямой и нормальным вектором заданной плоскости.

Раздел нахождения угла, образованного двумя векторами, выявили, что этот угол принимает значение скалярного произведения векторов и произведения этих длин. Процесс вычисления синуса угла, полученного пересечением прямой и плоскости, выполняется по формуле

sin α = cos a → , n → ^ = a → , n → ^ a → · n → = a x · n x + a y · n y + a z · n z a x 2 + a y 2 + a z 2 · n x 2 + n y 2 + n z 2

Значит, формулой для вычисления угла между прямой и плоскостью с координатами направляющего вектора прямой и нормального вектора плоскости после преобразования получается вида

α = a r c sin a → , n → ^ a → · n → = a r c sin a x · n x + a y · n y + a z · n z a x 2 + a y 2 + a z 2 · n x 2 + n y 2 + n z 2

Нахождение косинуса при известном синусе позволительно, применив основное тригонометрическое тождество. Пересечение прямой и плоскости образует острый угол. Это говорит о том, что его значение будет являться положительным числом, а его вычисление производится из формулы cos α = 1 - sin α .

Выполним решение нескольких подобных примеров для закрепления материала.

Пример 1

Найти угол, синус, косинус угла, образованного прямой x 3 = y + 1 - 2 = z - 11 6 и плоскостью 2 x + z - 1 = 0 .

Решение

Для получения координат направляющего вектора необходимо рассмотреть канонические уравнения прямой в пространстве. Тогда получим, что a → = (3 , - 2 , 6) является направляющим вектором прямой x 3 = y + 1 - 2 = z - 11 6 .

Для нахождения координат нормального вектора необходимо рассмотреть общее уравнение плоскости, так как их наличие определяется коэффициентами, имеющимися перед переменными уравнения. Тогда получим, что для плоскости 2 x + z - 1 = 0 нормальный вектор имеет вид n → = (2 , 0 , 1) .

Необходимо перейти к вычислению синуса угла между прямой и плоскостью. Для этого необходимо произвести подстановку координат векторов a → и b → в заданную формулу. Получаем выражение вида

sin α = cos a → , n → ^ = a → , n → ^ a → · n → = a x · n x + a y · n y + a z · n z a x 2 + a y 2 + a z 2 · n x 2 + n y 2 + n z 2 = = 3 · 2 + (- 2) · 0 + 6 · 1 3 2 + (- 2) 2 + 6 2 · 2 2 + 0 2 + 1 2 = 12 7 5

Отсюда найдем значение косинуса и значение самого угла. Получим:

cos α = 1 - sin α = 1 - 12 7 5 2 = 101 7 5

Ответ: sin α = 12 7 5 , cos α = 101 7 5 , α = a r c cos 101 7 5 = a r c sin 12 7 5 .

Пример 2

Имеется пирамида, построенная при помощи значений векторов A B → = 1 , 0 , 2 , A C → = (- 1 , 3 , 0) , A D → = 4 , 1 , 1 . Найти угол между прямой A D и плоскостью А В С.

Решение

Для вычисления искомого угла, необходимо иметь значения координат направляющего вектора прямой и нормального вектора плоскости. для прямой A D направляющий вектор имеет координаты A D → = 4 , 1 , 1 .

Нормальный вектор n → , принадлежащий плоскости А В С, является перпендикулярным вектору A B → и A C → . Это подразумевает то, что нормальным вектором плоскости А В С можно считать векторное произведение векторов A B → и A C → . Вычислим это по формуле и получим:

n → = A B → × A C → = i → j → k → 1 0 2 - 1 3 0 = - 6 · i → - 2 · j → + 3 · k → ⇔ n → = (- 6 , - 2 , 3)

Необходимо произвести подстановку координат векторов для вычисления искомого угла, образованного пересечением прямой и плоскости. получим выражение вида:

α = a r c sin A D → , n → ^ A D → · n → = a r c sin 4 · - 6 + 1 · - 2 + 1 · 3 4 2 + 1 2 + 1 2 · - 6 2 + - 2 2 + 3 2 = a r c sin 23 21 2

Ответ: a r c sin 23 21 2 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля - до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.