Сп гибридизация примеры. Пример определения типа связи. Пример определения типа гибридизации и полярности молекул










Примеры. Определите тип химической связи между атомами в молекулах веществ: гидроксида натрия, серной кислоты, гидроксида мышьяка, сульфата натрия. Покажите стрелкой к какому элементу смещена электронная пара Какая связь более полярна? Каковы степени окисления атомов элементов?


Алгоритм выполнения 1.Изобразить графическую формулу. 2. Под каждым элементом проставить значение электроотрицательности из таблицы. 3. Стрелкой показать смещение электронной плотности. 4. Рассчитать разность относительных электроотрицательностей и указать тип связи (ионная, КП, КНП) 5. По направлению и количеству смещений электронной плотности определить степени окисления атомов элементов.


Пример выполнения NaOH Na OH 0,93 3,5 2, ОЭО(O-Na) ОЭО(O-Na)= 3,5 – 0,93=2,63 ОЭО(О-Н)= 3,5-2,1=1,4 ионная КП


Продолжение H 2 SO 4 S O O O O H H ОЭО(О-Н)=3,5-2.1=1.4 КП ОЭО(O-S)=3,5-2,6=0,9 КП






Определить тип гибридизации центрального атома в молекулах 1. СН 4 метана 2. NH 3 аммиака 3. Н 2 О Пример С НН Н Н Центральный атом – углерод. В(С)=4 3. …2s 2 2p s 1 2p 3


5. В формировании структуры молекулы участвуют одна s и три p- электронные орбитали. Все связи в молекуле метана одинарные -связи. Тип гибридизации sp 3. Все электронные облака участвующие в гибридизации одинаковы. Следовательно углы между ними одинаковы и =0. Молекула неполярна. Геометрическая форма тетраэдр. Ответ sp 3 -гибридизация =0, неполярная молекула


Молекула аммиака Рассуждая аналогично для молекулы аммиака: 1 N H H H 2. B(N)=3, …2s 2 2p 3: связи+электронная пара. 5. SР 3 - гибридизация. Электронные облака разного характера. Углы между ними неодинаковы. 0. Молекула полярна.


Молекула воды 2. Кислород В=2. :O: H H s 2 2p 4 4. В молекуле 2 -связи и две электроные пары. В формировании структуры молекулы участвуют s- и три p-электронные орбитали. Тип гибридизации sp 3. 0 (т.к. Углы между электронными облаками различны). Молекула полярна.


Взаимодействия между молекулами. Водородная связь Водородная связь – это особый вид взаимодействия между молекулами веществ. Водородная связь возникает между атомом водорода и другим более электроотрицательным атомом за счет сил электростатического притяжения по донорно-акцепторному механизму.


Вандерваальсово взаимодействие (межмолекулярное взаимодействие) 1873 год голландский ученый И. Ван-дер-Ваальс, предположил, что существуют силы, обусловливвающие притяжение между молекулами. Типы взаимодействия: 1) диполь-дипольное (ориентационное) Взаимодействие полярных молекул. 2) Индукционное. Взаимодействие полярных и неполярных молекул. Энергия этого вида взаимодействия слабее, чем ориентационного. 3)Дисперсионное. В неполярных молекулах (инертные газы) возникают флуктуации электронной плотности, в результате возникают мгновенные диполи, которые могут индуцировать соседние молекулы.



Основные понятия органической химии. Углерод выделяется среди всех элементов тем, что его атомы могут связываться друг с другом в длинные цепи или циклы. Именно это свойство позволяет углероду образовывать миллионы соединений, изучению которых посвящена целая область - органическая химия.

Современная теория строения молекул объясняет и огромное число органических соединений, и зависимость свойств этих соединений от их химического строения. Она же полностью подтверждает основные принципы теории химического строения, разработанные выдающимся русским ученым А. М. Бутлеровым. (НЕ ФАКТ ЧТО ТО ЧТО НУЖНО).

Гибридизация (химия) - специфическое взаимодействие атомных орбиталей в молекулах.

Атомы (наименьшая возможная частица любого из простейших химических веществ, называемых элементами) состоят из ядер и электронов, которые вокруг них крутятся. Электроны - это не совсем корпускулы, но и волны тоже, поэтому они образуют своеобразные облака вокруг ядер атомов (некие пространства, в которых "обитают" электроны). Если облако одного электрона парекрывается с облаком другого, то может произойти гибридизация - электронные облака объединяются и два электрона начинают "обитать" в одном общем облаке. Поскольку эти электроны принадлежат разным атомам, атомы становятся связаными.

Гибридизация орбиталей - концепция смешения разных, но близких по энергии орбиталей данногоатома, с возникновением того же числа новых гибридных орбиталей, одинаковых по энергии и форме. Гибридизация атомных орбиталей происходит при возникновении ковалентной связи между атомами. Гибридизация орбиталей очень полезна при объяснении формы молекулярных орбиталей и является интегральной частью теории валентных связей.

Химические превращения высокомолекулярных соединений. Реакции деструкции полимеров. Виды деструкции.

Различают три вида реакций полимеров:
– реакции без изменения степени полимеризации (полимераналогичные превращения);
– реакции, приводящие к ее увеличению (структурирование, блок- и привитая сополимеризация);
– реакции, приводящие к уменьшению степени полимеризации (разрыв цепи при деструкции полимера).

Виды:

Химическая деструкция;

Окислительн6ая деструкция;

Окислительная деструкция наблюдается как у гетероцепных, так и у карбоцепных полимеров;

Деструкция под влиянием физических воздействий

Термическая деструкция

Фотохимическая деструкция

Деструкция под влиянием радиоактивного излучения. Под влиянием ионизирующих излучений полимеры претерпевают глубокие химические и структурные изменения, приводящие к изменению физико-химических и физико-механических свойств


Механохимическая деструкция

Билет № 5

1.Типы гибридизации атомных орбиталей в органических соединениях. sp 3 −, sp 2 −, sp− гибридизация.

Атомная орбиталь – это функция, которая описывает плотность электронного облака в каждой точке пространства вокруг ядра атома.

Виды гибридизации

Sp-гибридизация

Происходит при смешивании одной s- и одной p-орбиталей. Образуется две равноценные sp-атомные орбитали, расположенные линейно под углом 180 градусов и направленные в разные стороны от ядра атома углерода. Две оставшиеся негибридные p-орбитали располагаются во взаимно перпендикулярных плоскостях и участвуют в образовании π-связей, либо занимаются неподелёнными парами электронов.

sp 2 -гибридизация

Происходит при смешивании одной s- и двух p-орбиталей. Образуется три гибридные орбитали с осями, расположенными в однойплоскости и направленными к вершинам треугольника под углом 120 градусов. Негибридная p-атомная орбиталь перпендикулярна плоскости и, как правило, участвует в образовании π-связей

sp 3 -гибридизация

Происходит при смешивании одной s- и трех p-орбиталей, образуя четыре равноценные по форме и энергии sp3-гибридные орбитали. Могут образовывать четыре σ-связи с другими атомами или заполняться неподеленными парами электронов.

Оси sp3-гибридных орбиталей направлены к вершинам правильного тетраэдра. Тетраэдрический угол между ними равен 109°28", что соответствует наименьшей энергии отталкивания электронов. Так же sp3-орбитали могут образовывать четыре σ-связи с другими атомами или заполняться неподеленными парами электронов.

Задача 261.
Какие типы гибридизации АО углерода соответствуют образованию молекул СН 4 , С 2 Н 6 , С 2 Н 4 , С 2 Н 2 ?
Решение:
а) В молекулах СН 4 и С 2 Н 6 валентный электронный слой атома углерода содержит четыре электронных пары:

Поэтому электронные облака атома углерода в молекулах СН 4 , С 2 Н 6 будут максимально удалены друг от друга при sp3-гибридизации, когда их оси направлены к вершинам тетраэдра. При этом в молекуле СН 4 все вершины тетраэдра будут заняты атомами водорода, так что молекула СН4 имеет тетраэдрическую конфигурацию с атомом углерода в центре тетраэдра. В молекуле С 2 Н 6 атомы водорода занимают три вершины тетраэдра, а к четвёртой вершине направлено общее электронное облако другого атома углерода, т.е. два атома углерода соединены друг с другом. Это можно представить схемами:

б) В молекуле С 2 Н 4 валентный электронный слой атома углерода, как и в молекулах СН 4 , С 2 Н 6 . содержит четыре электронные пары:

При образовании С 2 Н 4 три ковалентные связи образованы по обычному механизму, т.е. являются - связями, и одна - - связь. При образовании молекулы С 2 Н 4 каждый атом углерода с двумя атомами водорода - связями и друг с другом двумя связями, одной - и одной - связями. Гибридные облака, соответствующие данному типу гибридизации, располагаются в атоме углерода так, чтобы взаимодействие между электронами было минимальным, т.е. как можно дальше друг от друга. Данное расположение атомов углерода (две двойные связи между атомами углерода) характерно для sp 2 -гибридизации АО углерода. При sp 2 -гибридизации электронные облака в атомах углерода ориентированы в направлениях, лежащих в одной плоскости и составляющих друг с другом углы в 120 0 , т.е. в направлениях к вершинам правильного треугольника. В молекуле этилена в образовании - связей участвуют три sp 2 -гибридные орбитали каждого атома углерода, две между двумя атомами водорода и одна со вторым атомом углерода, а - связь образуется за счёт р-электронных облаков каждого атома углерода. Структурная формула молекулы С 2 Н 4 будет иметь вид:

в) В молекуле С 2 Н 2 валентный электронный слой атома углерода содержит четыре пары электронов:

Структурная формула С 2 N 2 имеет вид:

Каждый атом углерода соединён одной электронной парой с атомом водорода и тремя электронными парами с другим атомом углерода. Таким образом, в молекуле ацетилена атомы углерода соединены друг с другом одной -связью и двум -связями. С водородом каждый атом углерода соединён -связью. В образовании - связей участвуют две sp-гибридные АО, которые расположены друг относительно друга так, что взаимодействие между ними минимальное, т.е. как можно дальше друг от друга. Поэтому при sp-гибридизации электронные облака между атомами углерода ориентированы в противоположных направлениях друг относительно друга, т.е. угол между связями С-С составляет 180 0 . Поэтому молекула С 2 Н 2 имеет линейное строение:

Задача 262.
Указать тип гибридизации АО кремния в молекулах SiH 4 и SiF 4 . Полярны ли эти молекулы?
Решение:
В молекулах SiH 4 и SiF 4 валентный электронный слой содержит четыре пары электронов:

Поэтому в обоих случаях электронные облака атома кремния будут максимально удалены друг от друга при sp 3 -гибридизации, когда их оси направлены к вершинам тетраэдра. При этом в молекуле SiH 4 все вершины тетраэдра заняты атомами водорода, а в молекуле SiF 4 – атомами фтора, так что эти молекулы имеют тетраэдрическую конфигурацию с атомом кремния в центре тетраэдра:

В тетраэдрических молекулах SiH 4 и SiF 4 дипольные моменты связей Si-H и Si-F взаимно компенсируют друг друга, так что суммарные дипольные моменты обоих молекул будут равны нулю. Эти молекулы неполярны, несмотря на полярность связей Si-H и Si-F.

Задача 263.
В молекулах SО 2 и SО 3 атом серы находится в состоянии sp 2 -гибридизации. Полярны ли эти молекулы? Какова их пространственная структура?
Решение:
При sp 2 -гибридизации гибридные облака располагаются в атоме серы в направлениях, лежащих в одной плоскости и составляющих друг с другом углы в 120 0 , т.е. направленных к вершинам правильного треугольника.

а) В молекуле SО 2 две sp 2 -гибридные АО образуют связь с двумя атомами кислорода, третья sp 2 -гибридная орбиталь будет занята свободной электронной парой. Эта электронная пара будет смещать электронную плоскость и молекула SО 2 примет форму неправильного треугольника, т.е. угол OSO не будет равен 120 0 . Поэтому молекула SО 2 будет иметь угловую форму при sp 2 -гибридизации орбиталей атома структуру:

В молекуле SО 2 взаимной компенсации дипольных моментов связей S-O не происходит; дипольный момент такой молекулы будет иметь значение больше нуля, т.е. молекула полярна.

б) В угловой молекуле SО 3 все три sp2-гибридные АО образуют связь с тремя атомами кислорода. Молекула SО 3 будет иметь форму плоского треугольника с sp 2 -гибридизацией атома серы:

В треугольной молекуле SО 3 дипольные моменты связей S-O взаимно компенсируют друг друга, так что суммарный дипольный момент будет равен нулю, молекула полярна.

Задача 264.
При взаимодействии SiF4 с HF образуется сильная кислота Н 2 SiF 6 , диссоциирующая на ионы Н + и SiF 6 2- . Может ли подобным образом протекать реакция между СF 4 и НF? Указать тип гибридизации АО кремния в ионе SiF 6 2- .
Решение:
а) При возбуждении атом кремния переходит из состояния 1s 2 2s 2 2p 6 3s 2 3p 3 в состояние 1s 2 2s 2 2p 6 3s 1 3p 4 3d 0 , а электронное строение валентных орбиталей соответствует схеме:

Четыре неспаренных электрона возбуждённого атома кремния могут участвовать в образовании четырёх ковалентных связей по обычному механизму с атомами фтора (1s 2 2s 2 2p 5), имеющими по одному неспаренному электрону с образованием молекулы SiF 4 .

При взаимодействии SiF 4 с HF образуется кислота Н 2 SiF 6 . Это возможно, потому что в молекуле SiF 4 имеются свободные 3d-орбитали, а в ионе F- (1s 2 2s 2 2p 6) свободные пары электронов. Связь осуществляется по донорно-акцепторному механизму за счёт пары электронов каждого из двух ионов F - (HF ↔ H + + F -) и свободных 3d-орбиталей молекулы SiF 4 . При этом образуется ион SiF 6 2- , который с ионами H + образует молекулу кислоты Н 2 SiF 6 .

б) Углерод (1s 2 2s 2 2p 2) может образовать, подобно кремнию, соединение СF 4 , ног при этом валентные возможности атома углерода будут исчерпаны (нет неспаренных электронов, свободных пар электронов и свободных валентных орбиталей на валентном уровне). Схема строения валентных орбиталей возбуждённого атома углерода имеет вид:

При образовании СF 4 все валентные орбитали углерода заняты, поэтому ион образоваться не может.

В молекуле SiF 4 валентный электронный слой атома кремния содержит четыре пары электронов:

Это же наблюдается и для молекулы СF 4 . поэтому в обоих случаях электронные облака атомов кремния и углерода будут максимально удалены друг от друга при sp3-гибридизации. Когда их оси будут направлены к вершинам тетраэдра:

Для объяснения фактов, когда атом образует большее число связей, чем число неспаренных электронов в его основном состоянии (например, атом углерода), используется постулат о гибридизации близких по энергии атомных орбиталей. Гибридизация АО происходит при образовании ковалентной связи , если при этом достигается более эффективное перекрывание орбиталей. Гибридизация атома углерода сопровождается его возбуждением и переносом электрона с 2s - на 2р -АО:

Основное и возбужденное состояния атома углерода.

Гибридизация АО - это взаимодействие (смешение) разных по типу, но близких по энергии атомных орбиталей данного атома с образованием гибридных орбиталей одинаковой формы и энергии.

Например, смешение 2s-АО с 2p -АО дает две гибридные 2sp -АО:

АО с большой разницей в энергии (например, 1s и 2р ) в гибридизацию не вступают. В зависимости от числа участвующих в гибридизации p -АО возможны следующие виды гибридизации:

для атомов углерода и азота - sp 3 , sp 2 и sp ;

для атома кислорода - sp 3 , sp 2 ;

для галогенов - sp 3 .

Гибридная АО асимметрична и сильно вытянута в одну сторону от ядра (форма неправильной восьмерки).

В отличие от негибридных s - или р -АО, она имеет одну большую долю, которая хорошо образует химическую связь, и малую долю, которую обычно даже не изображают. Гибридизованные АО при взаимодействии с орбиталями различных типов (s -, р - или гибридными АО) других атомов обычно дают s-МО, т.е. образуют s-связи. Такая связь прочнее связи, образованной электронами негибридных АО, за счет более эффективного перекрывания.

3.3.1. sp 3 -Гибридизация (тетраэдрическая).

Одна s - и три р четыре равноценные по форме и энергии sp 3 -гибридные орбитали.

Орбитальная модель атома в sp 3 -гибридизованном состоянии.

Для атома углерода и других элементов 2-го периода этот процесс происходит по схеме:

2s + 2p x + 2p y + 2p z = 4 (2sp 3)

Схема sp 3 -гибридизации атомных орбиталей.

Оси sp 3 -гибридных орбиталей направлены к вершинам правильного тетраэдра. Тетраэдрический угол между ними равен 109°28", что соответствует наименьшей энергии отталкивания электронов.



Впервые идею о направленности единиц сродства (валентностей) атома углерода по углам тетраэдра независимо друг от друга выдвинули в 1874 г. Вант-Гофф и Ле Бель.

sp 3 -Орбитали могут образовывать четыре s-связи с другими атомами или заполняться неподеленными парами электронов.

А как наглядно изобразить пространственное строение атома в sp 3 -состоянии на рисунке?

В этом случае sp 3 -гибридные орбитали изображают не электронными облаками, а прямыми линиями или клиньями в зависимости от пространственной ориентации орбитали. Такое схематическое изображение используется при написании стереохимических (пространственных) формул молекул.

Переход от орбитальной модели (а) к пространственной формуле (б).

На примере молекулы метана показаны объемные модели и пространственная (стереохимическая) формула молекулы с sp 3 -углеродным атомом.

Модель молекулы метана

sp 3 -Гибридизованное состояние свойственно атому, если сумма числа связанных с ним атомов и числа его неподеленных электронных пар равна 4.

Углерод в sp 3 -гибридном состоянии встречается в простом веществе - алмазе. Это состояние характерно для атомов С, N, O и др., соединенных с другими атомами одинарными связями (sp 3 -атомы выделены красным цветом):

С H 4 , RC H 3 , N H 3 , RN H 2 , H 2 O , RO H, R 2 O ;

а также анионам типа:

R 3 C : - , RO - .

Следствием тетраэдрического строения sp 3 -атома является возможность существования двух оптических стереоизомеров у соединения, содержащего такой атом с четырьмя разными заместителями (Вант-Гофф, Ле Бель, 1874).

3.3.2. sp 2 -Гибридизация (плоскостно-тригональная).

Одна s - и две p -орбитали смешиваются, и образуются три равноценные sp 2 -гибридные орбитали, расположенные в одной плоскости под углом 120° (выделены синим цветом). Они могут образовывать три s-связи. Третья р -орбиталь остается негибридизованной и ориентируется перпендикулярно плоскости расположения гибридных орбиталей. Эта р -АО участвует в образовании p-связи.

Для элементов 2-го периода процесс sp 2 -гибридизации происходит по схеме:

2s + 2p x + 2p y = 3 (2sp 2) 2p z -АО в гибридизации не участвует.

Для изображения пространственного строения атомов в sp 2 -состоянии используются те же приемы, что и в случае sp 3 -атомов:

Переход от орбитальной модели атома в sp 2 -гибридизированном состоянии (а) к пространственной формуле (б). Строение молекул с sp 2 -атомами отражают их модели:

Модели молекулы этилена

sp 2 -Гибридизованное состояние свойственно атому, если сумма числа связанных с ним атомов и числа его неподеленных электронных пар равна 3

Углерод в sp 2 -гибридном состоянии образует простое вещество графит. Это состояние характерно для атомов С, N, O и др. с двойной связью (sp 2 -атомы выделены красным цветом):

H 2 C =C H 2 , H 2 C =C HR, R 2 C =N R, R-N =N -R, R 2 C =O , R-N =O ,

а также для катионов типа

R 3 C + и свободных радикалов R 3 C · .

Чаще всего встречаются гибридизации sp, sp 2 , sp 3 и sp 3 d 2 . Каждому типу гибридизации соответствует определенное пространственное строение молекул вещества.

sp-Гибридизация . Этот тип гибридизации наблюдается при образовании атомом двух связей за счет электронов, находящихся на s-орбитали и на одной p-орбитали (одного и того же энергетического уровня). При этом образуются две гибридные q-орбитали, направленные в противоположные стороны под углом 180 º (рис. 22).

Рис. 22. Схема sp-гибридизации

При sp-гибридизации образуются линейные трехатомные молекулы типа АВ 2 , где А – центральный атом, у которого происходит гибридизация, а В – присоединенные атомы, у которых гибридизация не происходит. Такие молекулы образуются атомами бериллия, магния, а также атомами углерода в ацетилене (С 2 Н 2) и в углекислом газе (СО 2).

Пример 5. Объясните химическую связь в молекулах ВеН 2 и ВеF 2 и строение этих молекул.

Решение. Атомы бериллия в нормальном состоянии не образуют химических связей, т.к. не имеют неспаренных электронов (2s 2). В возбужденном состоянии (2s 1 2p 1) электроны находятся на разных орбиталях, поэтому при образовании связей происходит sp-гибридизация по схеме, приведенной на рис. 22. К двум гибридным орбиталям присоединяются два атома водорода или фтора, как показано на рис. 23.

1) 2)

Рис. 23. Схема образования молекул ВеН 2 (1) и ВеF 2 (2)

Образующиеся молекулы – линейные, валентный угол 180º.

Пример 6. По экспериментальным данным молекула СО 2 – линейная, причём, обе связи углерода с кислородом одинаковы по длине (0,116 нм) и энергии (800 кДж/моль). Как объясняются эти данные?

Решение . Эти данные о молекуле диоксида углерода объясняет следующая модель ее образования.

Атом углерода образует связи в возбужденном состоянии, при котором он имеет четыре неспаренных электрона: 2s 1 2p 3 . При образовании связей происходит sp-гибридизация орбиталей. Гибридные орбитали направлены по прямой линии в противоположные стороны от ядра атома, а оставшиеся две чистые (негибридные) p-орбитали располагаются перпендикулярно друг к другу и к гибридным орбиталям. Все орбитали (гибридные и негибридные) содержат по одному неспаренному электрону.

Каждый атом кислорода, имеющий два неспаренных электрона на двух взаимно перпендикулярных p-орбиталях, присоединяется к атому углерода s-связью и p-связью: s-связь образуется с участием гибридной орбитали углерода, а p-связь образуется перекрыванием чистых p-орбиталей атомов углерода и кислорода. Образование связей в молекуле СО 2 показано на рис. 24.

Рис. 24. Схема образования молекулы СО 2

Кратность связи, равная двум, объясняет большую прочность связи, а sp-гибридизация – линейное строение молекулы.

Смешивание одной s- и двух p-орбиталей называется sp 2 -гибридизацией . При этой гибридизации получаются три равноценные q-орбитали, расположенные в одной плоскости под углом 120º (рис. 25).

Рис. 25. Схема sp 2 -гибридизации

Образующиеся при этой гибридизации молекулы типа АВ 3 имеют форму плоского правильного треугольника с атомами А в центре и атомами В в его вершинах. Такая гибридизация происходит в атомах бора и других элементов третьей группы и в атомах углерода в молекуле С 2 Н 4 и в ионе СО 3 2- .

Пример 7. Объясните образование химических связей в молекуле ВН 3 и ее строение.

Решение. Экспериментальные исследования свидетельствуют о том, что в молекуле ВН 3 все три связи В–Н расположены в одной плоскости, углы между связями равны 120º. Это строение молекулы объясняется тем, что в атоме бора в возбужденном состоянии смешиваются валентные орбитали, заселённые неспаренными электронами (2s 1 2p 2) и он образует связи sp 2 -гибридными орбиталями. Схема молекулы ВН 3 приведена на рис. 26.

Рис. 26. Схема образования молекулы ВН 3

Если в гибридизации участвуют одна s- и три p-орбитали (sp 3 -гибридизация ), то в результате образуются четыре гибридные орбитали, направленне к вершинам тетраэдра, т.е. ориентированные под углами 109º28 ¢ (~109,5º) друг к другу. Образующиеся молекулы имеют тетраэдрическое строение. Гибридизацией этого типа объясняется строение предельных углеводородов, соединений углерода с галогенами, многих соединений кремния, катиона аммония NH 4 + и др. Классическим примером этой гибридизации является молекула метана CH 4 (рис. 27)

Рис. 27. Схема образования химических связей в молекуле СН 4

Если в гибридизации участвуют одна s-, три p- и две d-орбитали (sp 3 d 2 - гибридизация ), то возникают шесть гибридных орбиталей, напрвленных к вершинам октаэдра, т.е. ориентированных под углами 90º друг к другу. Образующиеся молекулы имеют октаэдрическое строение. Гибридизацией этого типа объясняется строение соединений серы, селена и теллура с галогенами, например SF 6 и SeF 6 , и многих комплексных ионов: 2– , 3– и т.д. На рис. 28 показано образование молекулы гексафторида серы.

Рис. 28. Схема молекулы SF 6

Химические связи с участием гибридных орбиталей отличаются большой прочностью. Если энергию s-связи, образованную «чистыми» s-орбиталями, принять за единицу, то энергия связи при sp-гибридизации будет равна 1,43, при sp 2 -гибридизации 1,99, при sp 3 -гибридизации 2,00, а при sp 3 d 2 -гибридизации 2,92. Увеличение прочности связей объясняется более полным перекрыванием гибридных орбиталей с негибридными при образовании химической связи.

Кроме рассмотренных типов гибридизации, в химических соединениях встречаются гибридизации sp 2 d, sp 3 d, sp 3 d 3 , sp 3 d 3 и другие. При sp 2 d-гибридизации молекулы и ионы имеют квадратную форму, при sp 3 d-гибридизации – форму тригональной бипирамиды и при sp 3 d 3 -гибридизации – пентагональной бипирамиды. Другие типы гибридизации встречаются редко.

Пример 8. Приведены уравнения двух похожих реакций:

1) CF 4 + 2HF = H 2 CF 6 ; 2) SiF 4 + 2HF = H 2 SiF 6

Какая из них невозможна с точки зрения образования химических связей?

Решение. Для образования H 2 CF 6 необходима sp 3 d 2 -гибридизация, но в атоме углерода валентные электроны находятся на втором энергетическом уровне, на котором нет d-орбиталей. Поэтому первая реакция в принципе невозможна. Вторая реакция возможна, так как sp 3 d 2 -гибридизация у кремния возможна.