«Теория систем и системный анализ. Задачи на пересечение и объединение множеств (Круги Эйлера)

Вновь возьмём множества Х = {0, 1, 3, 5} и Y = {1, 2, 3, 4} и наряду с ними рассмотрим множество {0, 1, 2, 3, 4, 5}. Это множество содержит все элементы множества Х и все элементы множества Y и не содержит никаких других элементов.

Множество, состоящее из всех элементов, принадлежащих или множеству А или множеству В, называется объединением множеств А и В, обозначается А U В. А U В = { х А или х В }

Итак, {0, 1, 3, 5}
{1, 2, 3, 4} = {0, 1, 2, 3, 4, 5}.

Если изобразить множества А и В при помощи кругов Эйлера, то объединение данных множеств изобразится заштрихованной областью.

Если множества не имеют общих элементов, то их объединение выглядит так:

Если одно из множеств является подмножеством другого, то их объединение будет выглядеть так:

Часто приходится рассматривать объединение и пересечение трёх и более множеств. Объединение множеств А, В и С есть множество, каждый элемент которого принадлежит хотя бы одному из множеств А, В или С; пересечение множеств А, В и С есть множество всех элементов, принадлежащих и множеству А, и множеству В, и множеству С.

А U В U С А ∩ В ∩ С

Например, объединение множеств остроугольных, тупоугольных и прямоугольных треугольников есть множество всех треугольников.

Еще операции над множествами можно показать с помощью детского анекдота: Однажды лев, царь зверей, собрал зверей на поляне и повелел им разделиться на умных и красивых. После того, как пыль улеглась, лев увидел на поляне две большие группы зверей и мартышку, прыгающую между ними. На вопрос: почему она прыгает туда, сюда, мартышка ответила: «Что мне, разорваться, что ли?». Так вот, мартышка из анекдота – это пример пересечения умных зверей и красивых. А объединением умных и красивых зверей является все множество зверей.

Объединение и пересечение множеств обладают многими свойствами, аналогичными свойствам суммы и произведения чисел:

п / п

Свойство операций над множествами

Свойство арифметических операций

Название свойства

Коммутативность

(а+b)+c = a+(b+c)

Ассоциативность

Дистрибутивность

Однако эта аналогия не всегда имеет место. Например, для множеств справедливы равенства:

6. (А U С)(В U С) = (A B) U С.

7. А U А = А.

8. А А = А.

Соответствующие равенства для чисел верны не всегда.

Заметим, что, если в выражении есть знаки пересечения и объединения множеств, и нет скобок, то сначала выполняют пересечение, так как считают, что пересечение более «сильная» операция, чем объединение.

1.3.3 Вычитание множеств

Если заданы два множества, то можно не только найти их пересечение и объединение, но и вычесть из одного множества другое. Результат вычитания называют разностью и определяют следующим образом.

Разностью множеств А и В называется множество, содержащее все элементы, которые принадлежат множеству А и не принадлежат множеству В , обозначается А \ В. А \ В = { х А и х В }.

Х \ Y = {0, 1, 3, 5} \ {1, 2, 3, 4} = {0, 5} . Если мы найдем разность множеств Y и Х, то результат будет выглядеть так: Y \ X = {2; 4} . Таким образом, разность множеств не обладает переместительным (коммутативным) свойством.

Если изобразить множестваА и В при помощи кругов Эйлера, то разность данных множеств изобразится заштрихованной областью.

Если множества не имеют общих элементов, то их разность будет изображаться так:

А

Если одно из множеств является подмножеством другого, то их разность будет изображаться так:

Пересечение – более «сильная» операция, чем вычитание. Поэтому порядок выполнения действий в выражении А \ В С такой: сначала находят пересечение множеств В и С , а затем полученное множество вычитают из множества А. Что касается объединения и вычитания множеств, то их считают равноправными. Например, в выражении А \ В U С надо сначала выполнить вычитание (из А вычесть В), а затем полученное множество объединить с множеством С.

Вычитание множеств обладает рядом свойств:

    (А \ В) \ С = (А \ С) \ В.

    (А U В) \ С = (А \ С) U (В \ С).

    (А \ В) ∩ С = (А ∩ С) \ (В ∩С).

    А \ (В U С) = (А \ В) ∩ (А \ С).

    А \ (В ∩ С) = (А \ В) U (А \ С).

Математическим анализом называется раздел математики, занимающийся исследованием функций на основе идеи бесконечно малой функции.

Основными понятиями математического анализа являются величина, множество, функция, бесконечно малая функция, предел, производная, интеграл.

Величиной называется все что может быть измерено и выражено числом.

Множеством называется совокупность некоторых элементов, объединенных каким-либо общим признаком. Элементами множества могут быть числа, фигуры, предметы, понятия и т.п.

Множества обозначаются прописными буквами, а элементы множество строчными буквами. Элементы множеств заключаются в фигурные скобки.

Если элемент x принадлежит множеству X , то записывают x Х ( — принадлежит).
Если множество А является частью множества В, то записывают А ⊂ В ( — содержится).

Множество может быть задано одним из двух способов: перечислением и с помощью определяющего свойства.

Например, перечислением заданы следующие множества:
  • А={1,2,3,5,7} — множество чисел
  • Х={x 1 ,x 2 ,...,x n } — множество некоторых элементов x 1 ,x 2 ,...,x n
  • N={1,2,...,n} — множество натуральных чисел
  • Z={0,±1,±2,...,±n} — множество целых чисел

Множество (-∞;+∞) называется числовой прямой , а любое число — точкой этой прямой. Пусть a — произвольная точка числовой прямой иδ — положительное число. Интервал (a-δ; a+δ) называется δ-окрестностью точки а .

Множество Х ограничено сверху (снизу), если существует такое число c, что для любого x ∈ X выполняется неравенство x≤с (x≥c). Число с в этом случае называется верхней(нижней) гранью множества Х. Множество, ограниченное и сверху и снизу, называется ограниченным . Наименьшая (наибольшая) из верхних (нижних) граней множества называется точной верхней (нижней) гранью этого множества.

Основные числовые множества

N {1,2,3,...,n} Множество всех
Z {0, ±1, ±2, ±3,...} Множество целых чисел. Множество целых чисел включает в себя множество натуральных.
Q

Множество рациональных чисел .

Кроме целых чисел имеются ещё и дроби. Дробь — это выражение вида , где p — целое число, q — натуральное. Десятичные дроби также можно записать в виде . Например: 0,25 = 25/100 = 1/4. Целые числа также можно записать в виде . Например, в виде дроби со знаменателем "один": 2 = 2/1.

Таким образом любое рациональное число можно записать десятичной дробью — конечно или бесконечной периодической.

R

Множество всех вещественных чисел .

Иррациональные числа — это бесконечные непериодические дроби. К ним относятся:

Вместе два множества (рациональных и иррациональных чисел) — образуют множество действительных (или вещественных) чисел.

Если множество не содержит ни одного элемента, то оно называется пустым множеством и записывается Ø .

Элементы логической символики

Запись ∀x: |x|<2 → x 2 < 4 означает: для каждого x такого, что |x|<2, выполняется неравенство x 2 < 4.

Квантор

При записи математических выражений часто используются кванторы.

Квантором называется логический символ, который характеризует следующие за ним элементы в количественном отношении.

  • ∀- квантор общности , используется вместо слов "для всех", "для любого".
  • ∃- квантор существования , используется вместо слов "существует", "имеется". Используется также сочетание символов ∃!, которое читается как существует единственный.

Операции над множествами

Два множества А и В равны (А=В), если они состоят из одних и тех же элементов.
Например, если А={1,2,3,4}, B={3,1,4,2} то А=В.

Объединением (суммой) множеств А и В называется множество А ∪ В, элементы которого принадлежат хотя бы одному из этих множеств.
Например, если А={1,2,4}, B={3,4,5,6}, то А ∪ B = {1,2,3,4,5,6}

Пересечением (произведением) множеств А и В называется множество А ∩ В, элементы которого принадлежат как множеству А, так и множеству В.
Например, если А={1,2,4}, B={3,4,5,2}, то А ∩ В = {2,4}

Разностью множеств А и В называется множество АВ, элементы которого принадлежат множесву А, но не принадлежат множеству В.
Например, если А={1,2,3,4}, B={3,4,5}, то АВ = {1,2}

Симметричной разностью множеств А и В называется множество А Δ В, являющееся объединением разностей множеств АВ и ВА, то есть А Δ В = (АВ) ∪ (ВА).
Например, если А={1,2,3,4}, B={3,4,5,6}, то А Δ В = {1,2} ∪ {5,6} = {1,2,5,6}

Свойства операций над множествами

Свойства перестановочности

A ∪ B = B ∪ A
A ∩ B = B ∩ A

Сочетательное свойство

(A ∪ B) ∪ C = A ∪ (B ∪ C)
(A ∩ B) ∩ C = A ∩ (B ∩ C)

Счетные и несчетные множества

Для того, чтобы сравнить два каких-либо множества А и В, между их элементами устанавливают соответствие.

Если это соответствие взаимооднозначное, то множества называются эквивалентными или равномощными, А В или В А.

Пример 1

Множество точек катета ВС и гипотенузы АС треугольника АВС являются равномощными.

- (сумма множеств) понятие теории множеств; объединение множеств множество, состоящее из всех тех элементов, каждый из которых принадлежит хотя бы одному из данных множеств. Объединение множеств А и В обозначают АUВ или А+В …

- (сумма множеств), понятие теории множеств; объединение множеств множество, состоящее из тех элементов, каждый из которых принадлежит хотя бы одному из данных множеств. Объединение множеств А и В обозначают А + В. * * * ОБЪЕДИНЕНИЕ МНОЖЕСТВ… … Энциклопедический словарь

- (сумма множеств), понятие теории множеств; О. м. множество, состоящее из тех элементов, каждый из к рых принадлежит хотя бы одному из данных множеств. О. м. А и В обозначают A UB или А + В … Естествознание. Энциклопедический словарь

Объединение A и B Объединение множеств (тж. сумма или соединение) в теории множеств это множество, содержащее в себе все элементы исходных множеств. Объединение двух множеств A и B обычно обозначается, но иногда можно встретить запись в виде… … Википедия

Раздел математики, в котором изучаются общие свойства множеств, преимущественно бесконечных. понятие множества простейшее математическое понятие, оно не определяется, а лишь поясняется при помощи примеров: множество книг на полке, множество точек … Большой Энциклопедический словарь

Раздел математики, в котором изучаются общие свойства множеств, преимущественно бесконечных. Понятие множества простейшее математическое понятие, оно не определяется, а лишь поясняется при помощи примеров: множество книг на полке, множество… … Энциклопедический словарь

Математическая теория, изучающая точными средствами проблему бесконечности. Предмет М. л. свойства множеств (совокупностей, классов, ансамблей), гл. обр. бесконечных. Множество A есть любое собрание определенных и различимых между собой объектов … Словарь терминов логики

Объединение: В Викисловаре есть статья «объединение» Объединение разновидность организации … Википедия

Теория множеств раздел математики, в котором изучаются общие свойства множеств. Теория множеств лежит в основе большинства математических дисциплин; она оказала глубокое влияние на понимание предмета самой математики. Содержание 1 Теория… … Википедия

Объединение многозначный термин, входит в состав сложных терминов. В Викисловаре есть статья «объединение» Объединение разновидность организаций. Объединение общее название крупных воинских формирований … Википедия

Книги

  • Считаю до 20. Рабочая тетрадь для детей 6 - 7 лет. ФГОС ДО , Шевелев Константин Валерьевич. Рабочая тетрадь предназначена для работы с детьми 6 7 лет. Способствует достижению целей блока Познание путем формирования элементарных математических представлений. Даны методические…

Решение некоторых математических задач предполагает нахождение пересечения и объединения числовых множеств. В статье ниже рассмотрим эти действия подробно, в том числе, на конкретных примерах. Полученный навык будет применим для решения неравенств с одной переменной и систем неравенств.

Простейшие случаи

Когда мы говорим о простейших случаях в рассматриваемой теме, то имеем в виду нахождение пересечения и объединения числовых множеств, представляющих из себя набор отдельных чисел. В подобных случаях будет достаточно использования определения пересечения и объединения множеств.

Определение 1

Объединение двух множеств – это множество, в котором каждый элемент является элементом одного из исходных множеств.

Пересечение множеств – это множество, которое состоит из всех общих элементов исходных множеств.

Из указанных определений логически следуют следующие правила:

Чтобы составить объединение двух числовых множеств, имеющих конечное количество элементов, необходимо записать все элементы одного множества и дописать к ним недостающие элементы из второго множества;

Чтобы составить пересечение двух числовых множеств, необходимо элементы первого множества один за другим проверить на принадлежность второму множеству. Те из них, которые окажутся принадлежащими обоим множествам и будут составлять пересечение.

Полученное согласно первому правилу множество будет включать в себя все элементы, принадлежащие хотя бы одному из исходных множеств, т.е. станет объединением этих множеств по определению.

Множество, полученное согласно второму правилу, будет включать в себя все общие элементы исходных множеств, т.е. станет пересечением исходных множеств.

Рассмотрим применение полученных правил на практических примерах.

Пример 1

Исходные данные: числовые множества А = { 3 , 5 , 7 , 12 } и В = { 2 , 5 , 8 , 11 , 12 , 13 } . Необходимо найти объединение и пересечение исходных множеств.

Решение

  1. Определим объединение исходных множеств. Запишем все элементы, к примеру, множества А: 3 , 5 , 7 , 12 . Добавим к ним недостающие элементы множества В: 2 , 8 , 11 и 13 . В конечном итоге имеем числовое множество: { 3 , 5 , 7 , 12 , 2 , 8 , 11 , 13 } . Упорядочим элементы полученного множества и получим искомое объединение: А ∪ B = { 2 , 3 , 5 , 7 , 8 , 11 , 12 , 13 } .
  2. Определим пересечение исходных множеств. Согласно правилу, переберем один за другим все элементы первого множества A и проверим, входят ли они во множество B . Рассмотрим первый элемент - число 3: он не принадлежит множеству B , а значит не будет являться элементом искомого пересечения. Проверим второй элемент множества A , т.е. число 5: оно принадлежит множеству B , а значит станет первым элементом искомого пересечения. Третий элемент множества A – число 7 . Оно не является элементом множества B , а, следовательно, не является элементом пересечения. Рассмотрим последний элемент множества A: число 1 . Оно также принадлежит и множеству B , и соответственно станет одним из элементов пересечения. Таким образом, пересечение исходных множеств – множество, состоящее из двух элементов: 5 и 12 , т.е. А ∩ В = { 5 , 12 } .

Ответ: объединение исходных множеств – А ∪ B = { 2 , 3 , 5 , 7 , 8 , 11 , 12 , 13 } ; пересечение исходных множеств - А ∩ В = { 5 , 12 } .

Все вышесказанное относится к работе с двумя множествами. Что же касается нахождения пересечения и объединения трех и более множеств, то решение этой задачи возможно свести к последовательному нахождению пересечения и объединения двух множеств. Например, чтобы определить пересечение трех множеств A , В и С, возможно сначала определить пересечение A и B , а затем найти пересечение полученного результата с множеством C . На примере это выглядит так: пусть будут заданы числовые множества: А = { 3 , 9 , 4 , 3 , 5 , 21 } , В = { 2 , 7 , 9 , 21 } и С = { 7 , 9 , 1 , 3 } . Пересечение первых двух множеств составит: А ∩ В = { 9 , 21 } , а пересечение полученного множества с множеством А ∩ В = { 9 , 21 } . В итоге: А ∩ В ∩ С = { 9 } .

Однако на практике, чтобы найти объединение и пересечение трех и более простейших числовых множеств, которые состоят из конечного количества отдельных чисел, удобнее применять правила, аналогичные указанным выше.

Т.е., чтобы найти объединение трех и более множеств указанного типа, необходимо к элементам первого множества добавить недостающие элементы второго множества, затем – третьего и т.д. Для пояснения возьмем числовые множества: А = { 1 , 2 } , В = { 2 , 3 } , С = { 1 , 3 , 4 , 5 } . К элементам первого множества A добавится число 3 из множества B , а затем – недостающие числа 4 и 5 множества C . Таким образом, объединение исходных множеств: А ∪ В ∪ С = { 1 , 2 , 3 , 4 , 5 } .

Что же касается решения задачи на нахождение пересечения трех и более числовых множеств, которые состоят из конечного количества отдельных чисел, необходимо одно за другим перебрать числа первого множества и поэтапно проверять, принадлежит ли рассматриваемое число каждому из оставшихся множеств. Для пояснения рассмотрим числовые множества:

А = { 3 , 1 , 7 , 12 , 5 , 2 } В = { 1 , 0 , 2 , 12 } С = { 7 , 11 , 2 , 1 , 6 } D = { 1 , 7 , 15 , 8 , 2 , 6 } .

Найдем пересечение исходных множеств. Очевидно, что множество B имеет меньше всего элементов, поэтому именно их мы будем проверять, определяя, входят ли они в остальные множества. Число 1 множества B является элементом и прочих множеств, а значит является первым элементом искомого пересечения. Второе число множества B – число 0 – не является элементом множества A , а, следовательно, не станет элементом пересечения. Продолжаем проверку: число 2 множества B является элементом прочих множеств и становится еще одной частью пересечения. Наконец, последний элемент множества B – число 12 – не является элементом множества D и не является элементом пересечения. Таким образом, получаем: A ∩ B ∩ C ∩ D = { 1 , 2 } .

Координатная прямая и числовые промежутки как объединение их частей

Отметим на координатной прямой произвольную точку, например, с координатой - 5 , 4 . Указанная точка разобьет координатную прямую на два числовых промежутка – два открытых луча (-∞, -5,4) и (-5,4, +∞) и собственно точку. Нетрудно увидеть, что в соответствии с определением объединения множеств любое действительное число будет принадлежать объединению (- ∞ , - 5 , 4) ∪ { - 5 , 4 } ∪ (- 5 , 4 , + ∞) . Т.е. множество всех действительных чисел R = (- ∞ ; + ∞) возможно представить в виде полученного выше объединения. И наоборот, полученное объединение будет являться множеством всех действительных чисел.

Отметим, что заданную точку возможно присоединить к любому из открытых лучей, тогда он станет простым числовым лучом (- ∞ , - 5 , 4 ] или [ - 5 , 4 , + ∞) . При этом множество R будет описываться следующими объединениями: (- ∞ , - 5 , 4 ] ∪ (- 5 , 4 , + ∞) или (- ∞ , - 5 , 4) ∪ [ - 5 , 4 , + ∞) . .

Подобные рассуждения действительны не только относительно точки координатной прямой, но и относительно точки на любом числовом промежутке. Т.е., если мы возьмем любую внутреннюю точку любого произвольного промежутка, его возможно будет представить, как объединение его частей, полученных после деления заданной точкой, и самой точки. К примеру, задан полуинтервал (7 , 32 ] и точка 13 , принадлежащая этому числовому промежутку. Тогда заданный полуинтервал можно представить в виде объединения (7 , 13) ∪ { 13 } ∪ (13 , 32 ] и обратно. Мы можем включить число 13 в любой из промежутков и тогда заданное множество (7 , 32 ] можно представить, как (7 , 13 ] ∪ (13 , 32 ] или (7 , 13 ] ∪ (13 , 32 ] . Также мы можем взять в качестве исходных данных не внутреннюю точку заданного полуинтервала, а его конец (точку с координатой 32), тогда заданный полуинтервал можно представить, как объединение интервала (7 , 32) и множества из одного элемента { 32 } . Таким образом: (7 , 32 ] = (7 , 32) ∪ { 32 } .

Еще один вариант: когда берется не одна, а несколько точек на координатной прямой или числовом промежутке. Эти точки разобьют координатную прямую или числовой промежуток на несколько числовых промежутков, а объединение этих промежутков будут составлять исходные множества. К примеру, на координатной прямой заданы точки с координатами - 6 , 0 , 8 , которые разобьют ее на промежутки: (- ∞ , - 6) , (- 6 , 0) , (0 , 8) , (8 , + ∞) . При этом множество всех действительных чисел, олицетворением чего и является координатная прямая, возможно представить в виде объединения полученных промежутков и указанных чисел:

(- ∞ , - 6) ∪ { - 6 } ∪ (- 6 , 0) ∪ { 0 } ∪ (0 , 8) ∪ { 8 } ∪ (8 , + ∞) .

С темой нахождения пересечения и объединения множеств возможно наглядно разобраться, если использовать изображения заданных множеств на координатной прямой (если только речь – не о простейших случаях, рассмотренных в самом начале статьи).

Мы рассмотрим общий подход, который позволяет определить результат пересечения и объединения двух числовых множеств. Опишем подход в виде алгоритма. Рассматривать его шаги будем постепенно, каждый раз приводя очередной этап решения конкретного примера.

Пример 2

Исходные данные: заданы числовые множества А = (7 , + ∞) и В = [ - 3 , + ∞) . Необходимо найти пересечение и объединение данных множеств.

Решение

  1. Изобразим заданные числовые множества на координатных прямых. Их необходимо расположить друг над другом. Для удобства принято считать, что точки начала отсчета заданных множеств совпадают, и остается сохранным расположение точек друг относительно друга: любая точка с большей координатой лежит правее точки с меньшей координатой. При этом, если нам интересно объединение множеств, то координатные прямые объединяют слева квадратной скобкой совокупности; если интересует пересечение, то – фигурной скобкой системы.

В нашем примере для записи пересечения и объединения числовых множеств имеем: и

Изобразим еще одну координатную прямую, расположив ее под уже имеющимися. Она понадобится для отображения искомого пересечения или объединения. На этой координатной прямой отмечают все граничные точки исходных числовых множеств: сначала черточками, а позже, после выяснения характера точек с этими координатами, черточки будет заменены выколотыми или невыколотыми точками. В нашем примере это точки с координатами - 3 и 7 .

и

Точки, которые изображены на нижней координатной прямой в предыдущем шаге алгоритма, дают возможность рассматривать координатную прямую как набор числовых промежутков и точек (об этом мы говорили выше). В нашем примере координатную прямую представим в виде набора пяти числовых множеств: (- ∞ , - 3) , { - 3 } , (- 3 , 7) , { 7 } , (7 , + ∞) .

Теперь необходимо поочередно проверить принадлежность каждого из записанных множеств искомому пересечению или объединению. Получаемые выводы поэтапно отмечаются на нижней координатной прямой: когда промежуток является частью пересечения или объединения, над ним рисуется штриховка. Когда точка входит в пересечение или объединение, то штрих заменяется на сплошную точку; если точка не является частью пересечения или объединения – ее делают выколотой. В этих действиях нужно придерживаться таких правил:

Промежуток становится частью пересечения, если он одновременно является частью множества A и множества B (или иными словами – если есть штриховка над этим промежутком на обеих координатных прямых, отображающих множества А и B);

Точка становится частью пересечения, если она является одновременно частью каждого из множеств А и В (иными словами – если точка является невыколотой или внутренней точкой какого-либо интервала обоих числовых множеств A и B);

Промежуток становится частью объединения, если он является частью хотя бы одного из множеств A или B (иными словами – если присутствует штриховка над этим промежутком хотя бы на одной из координатных прямых, отображающих множества A и B .

Точка становится частью объединения, если она является частью хотя бы одного из множеств A и B (иными словами – точка является невыколотой или внутренней точкой какого-либо интервала хотя бы одного из множеств A и B).

Кратко резюмируя: пересечением числовых множеств A и B служит пересечение всех числовых промежутков множеств A и B , над которыми одновременно присутствует штриховка, и всех отдельных точек, принадлежащих и множеству А, и множеству В. Объединением числовых множеств A и B служит объединение всех числовых промежутков, над которыми присутствует штриховка хотя бы у одного из множеств A или B , а также всех невыколотых отдельных точек.

  1. Вернемся к примеру, определим пересечение заданных множеств. Для этого поочередно проверим множества: (- ∞ , - 3) , { - 3 } , (- 3 , 7) , { 7 } , (7 , + ∞) . Начнем с множества (- ∞ , - 3) , наглядно выделив его на чертеже:

Этот промежуток не будет включен в пересечение, потому что не является частью ни множества A , ни множества B (нет штриховки). И так наш чертеж сохраняет свой изначальный вид:

Рассмотрим следующее множество { - 3 } . Число - 3 является частью множества B (невыколотой точкой), но не входит в состав множества A , а потому не станет частью искомого пересечения. Соответственно на нижней координатной прямой точку с координатой - 3 делаем выколотой:

Оцениваем следующее множество (- 3 , 7) .

Оно является частью множества B (над интервалом присутствует штриховка), но не входит в множество A (над интервалом штриховка отсутствует): не будет входить в искомое пересечение, а значит на нижней координатной прямой не появляется никаких новых отметок:

Следующее множество на проверку - { 7 } . Оно является составом множества B (точка с координатой 7 является внутренней точкой промежутка [ - 3 , + ∞)), но не является частью множества A (выколотая точка), таким образом, рассматриваемый промежуток не станет частью искомого пересечения.. Отметим точку с координатой 7 как выколотую:

И, наконец, проверяем оставшийся промежуток (7 , + ∞) .

Промежуток входит в оба множества A и B (над промежутком присутствует штриховка), следовательно, становится частью пересечения. Штрихуем место над рассмотренным промежутком:

В конечном счете на нижней координатной прямой образовалось изображение искомого пересечения заданных множеств. Очевидно, что оно является множеством всех действительных чисел больше числа 7 , т.е.: А ∩ В = (7 , + ∞) .

  1. Следующим шагом определим объединение заданных множеств A и B . Последовательно проверим множества (- ∞ , - 3) , { - 3 } , (- 3 , 7) , { 7 } , (7 , + ∞) , устанавливая факт включения или невключения их в искомое объединение.

Первое множество (- ∞ , - 3) не является частью ни одного из исходных множеств A и B (над промежутками нет штриховок), следовательно, множество (- ∞ , - 3) не войдет в искомое объединение:

Множество { - 3 } входит в множество B , а значит будет входить в искомое объединение множеств A и B:

Множество (- 3 , 7) является составной частью множества B (над интервалом присутствует штриховка) и становится элементом объединения множеств A и B:

Множество 7 входит в числовое множество B , поэтому войдет и в искомое объединение:

Множество (7 , + ∞) , являясь элементом обоих множеств А и В одновременно, становится еще одной частью искомого объединения:

По итоговому изображению объединения исходных множеств А и В получаем: А ∩ В = [ - 3 , + ∞) .

Имея некий практический опыт применения правил нахождения пересечений и объединений множеств, описанные проверки легко проводятся устно, что позволяет быстро записывать конечный результат. Продемонстрируем на практическом примере, как выглядит его решение без детальных пояснений.

Пример 3

Исходные данные: множества А = (- ∞ , - 15) ∪ { - 5 } ∪ [ 0 , 7) ∪ { 12 } и В = (- 20 , - 10) ∪ { - 5 } ∪ (2 , 3) ∪ { 17 } . Необходимо определить пересечение и объединение заданных множеств.

Решение

Отметим заданные числовые множества на координатных прямых, чтобы иметь возможность получить иллюстрацию искомых пересечения и объединения:

Ответ: А ∩ В = (- 20 , - 15) ∪ { - 5 } ∪ (2 , 3) ; А ∪ В = (- ∞ , - 10) ∪ { - 5 } ∪ [ 0 , 7 ] ∪ { 12 , 17 } .

Также понятно, что при достаточном понимании процесса указанный алгоритм возможно подвергнуть оптимизации. К примеру, в процессе нахождения пересечения можно не тратить время на проверку всех промежутков и множеств, представляющих собой отдельные числа, ограничившись рассмотрением только тех промежутков и чисел, которые составляют множество А или В. Прочие промежутки в любом случае не войдут в пересечение, т.к. не являются частью исходных множеств. Составим иллюстрацию сказанного на практическом примере.

Пример 4

Исходные данные: множества А = { - 2 } ∪ [ 1 , 5 ] и B = [ - 4 , 3 ] .

Необходимо определить пересечение исходных множеств.

Решение

Геометрически изобразим числовые множества А и В:

Граничные точки исходных множеств разобьют числовую прямую на несколько множеств:

(- ∞ , - 4) , { - 4 } , (- 4 , - 2) , { - 2 } , (- 2 , - 1) , { 1 } , (1 , 3) , { 3 } , (3 , 5) , { 5 } , (5 , + ∞) .

Легко заметить, что числовое множество A можно записать, объединив некоторые из перечисленных множеств, а именно: { - 2 } , (1 , 3) , { 3 } и (3 , 5) . Достаточно будет проверить эти множества на их включенность также в множество В для того, чтобы найти искомое пересечение. Те, что войдут в множество В и станут элементами пересечения. Проведем проверку.

Совершенно понятно, что { - 2 } является частью множества B , ведь точка с координатой - 2 – внутренняя точка отрезка [ - 4 , 3) . Интервал (1 , 3) и множество { 3 } также входят в множество В (над интервалом присутствует штриховка, а точка с координатой 3 является для множества В граничной и невыколотой). Множество (3 , 5) не будет элементом пересечения, т.к. не входит в множество В (над ним не присутствует штриховка). Отметим все вышесказанное на чертеже:

В итоге искомым пересечением двух заданных множеств будет объединение множеств, которое мы запишем так: { - 2 } ∪ (1 , 3 ] .

Ответ: А ∩ В = { - 2 } ∪ (1 , 3 ] .

В заключении статьи обговорим еще, как решить задачу о нахождении пересечения и объединения нескольких множеств (более 2). Сведем ее, как рекомендовалось ранее, к необходимости определения пересечения и объединения первых двух множеств, затем полученного результата с третьим множеством и так далее. А можно использовать описанный выше алгоритм с единственным только отличием, что проверку вхождения промежутков и множеств, представляющих собой отдельные числа, необходимо проводить не по двум, а всем заданным множествам. Рассмотрим на примере.

Пример 5

Исходные данные: множества А = (- ∞ , 12 ] , В = (- 3 , 25 ] , D = (- ∞ , 25) ꓴ { 40 } . Необходимо определить пересечение и объединение заданных множеств.

Решение

Отображаем заданные числовые множества на координатных прямых и ставим с левой от них стороны фигурную скобку, обозначая пересечение, а также квадратную, обозначая объединение. Ниже отобразим координатные прямые с отмеченными штрихами граничными точками числовых множеств:

Таким образом, координатная прямая представлена следующими множествами: (- ∞ , - 3) , { - 3 } , (- 3 , 12) , { 12 } , (12 , 25) , { 25 } , (25 , 40) , { 40 } , (40 , + ∞) .

Начинаем искать пересечения, поочередно проверяя записанные множества на принадлежность каждому из исходных. Во все три заданных множества входит интервал (- 3 , 12) и множество { - 12 } : они и станут элементами искомого пересечения. Таким образом, получим: A ∩ B ∩ D = (- 3 , 12 ] .

Объединение заданных множеств составят множества: (- ∞ , - 3) - элемент множества А; { - 3 } – элемент множества А; (- 3 , 12) – элемент множества А; { 12 } – элемент множества А; (12 , 25) – элемент множества В; { 25 } – элемент множества В и { 40 } – элемент множества D . Таким образом, получим: A ∪ B ∪ D = (- ∞ , 25 ] ∪ { 40 } .

Ответ: A ∩ B ∩ D = (- 3 , 12 ] ; A ∪ B ∪ D = (- ∞ , 25 ] ∪ { 40 } .

Отметим также, что искомое пересечение числовых множеств часто является пустым множеством. Происходит это в тех случаях, когда в заданные множества не включены элементы, одновременно принадлежащие им всем.

Пример 6

Исходные данные: А = [ - 7 , 7 ] ; В = { - 15 } ∪ [ - 12 , 0) ∪ { 5 } ; D = [ - 15 , - 10 ] ∪ [ 10 , + ∞) ; Е = (0 , 27) . Определить пересечение заданных множеств.

Решение

Отобразим исходные множества на координатных прямых и штрихами граничные точки этих множеств на дополнительной прямой.

Отмеченные точки разобьют числовую прямую на множества: (- ∞ , - 15) , { - 15 } , (- 15 , - 12) , { - 12 } , (- 12 , - 10) , { - 10 } , (- 10 , - 7) , { - 7 } , (- 7 , 0) , { 0 } , (0 , 5) , { 5 } , (5 , 7) , { 7 } , (7 , 10) , { 10 } , (10 , 27) , { 27 } , (27 , + ∞) .

Ни одно из них не является одновременно элементом всех исходных множеств, следовательно, пересечение заданных множеств есть пустое множество.

Ответ: A ∩ B ∩ D ∩ Е = Ø .

Множества удобно изображать в виде кругов, которые называют кругами Эйлера.

На рисунке множество пересечения множеств X и Y закрашено в оранжевый цвет.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter