Условие для 1 закона менделя. Законы Менделя. Жизнь и научные исследования Грегора Иоганна Менделя

Моногибридное скрещивание. Первый закон Менделя.

В опытах Менделя при скрещивании сортов гороха, которые имели желтые и зеленые семена, все потомство (т.е. гибриды первого поколения) оказалось с желтым семенами. При этом не имело значения, из какого именно семена (желтого или зеленого) выросли материнские (отцовские) растения. Итак, оба родителя в равной степени способны передавать свои признаки потомству.
Аналогичные результаты были обнаружены и в опытах, в которых во внимание брались другие признаки. Так, при скрещивании растений с гладкими и морщинистым семенами все потомство имело гладкие семена. При скрещивании растений с пурпурными и белыми цветками у всех гибридов оказались лишь пурпурные лепестки цветков и т. д.
Обнаруженная закономерность получила название первый закон Менделя, или закон единообразия гибридов первого поколения. Состояние (аллель) признака, проявляющегося в первом поколении, получило название доминантного, а состояние (аллель), которое в первом поколении гибридов не проявляется, называется рецессивным. «Задатки» признаков (по современной терминологии - гены) Г. Мендель предложил обозначать буквами латинского алфавита. Состояния, принадлежащие к одной паре признаков, обозначают одной и той же буквой, но доминантный аллель - большой, а рецессивный - маленькой.

Второй закон Менделя.

При скрещивании гетерозиготных гибридов первого поколения между собой (самоопыления или родственное скрещивание) во втором поколении появляются особи как с доминантными, так и с рецессивными состояниями признаков, т.е. возникает расщепление, которое происходит в определенных отношениях. Так, в опытах Менделя на 929 растений второго поколения оказалось 705 с пурпурными цветками и 224 с белыми. В опыте, в котором учитывался цвет семян, с 8023 семян гороха, полученных во втором поколении, было 6022 желтых и 2001 зеленых, а с 7324 семян, в отношении которых учитывалась форма семени, было получено 5474 гладких и 1850 морщинистых. Исходя из полученных результатов , Мендель пришел к выводу, что во втором поколении 75% особей имеют доминантное состояние признака, а 25% - рецессивное (расщепление 3:1). Эта закономерность получила название второго закона Менделя , или закона расщепления.
Согласно этому закону и используя современную терминологию, можно сделать следующие выводы:

а) аллели гена, находясь в гетерозиготном состоянии, не изменяют структуру друг друга;
б) при созревании гамет у гибридов образуется примерно одинаковое число гамет с доминантными и рецессивными аллелями;

в) при оплодотворении мужские и женские гаметы, несущие доминантные и рецессивные аллели, свободно комбинируются.
При скрещивании двух гетерозигот (Аа), в каждой из которых образуется два типа гамет (половина с доминантными аллелями - А, половина - с рецессивными - а), необходимо ожидать четыре возможных сочетания. Яйцеклетка с аллелью А может быть оплодотворена с одинаковой долей вероятности как сперматозоидом с аллелью А, так и сперматозоидом с аллелью а; и яйцеклетка с аллелью а - сперматозоидом или с аллелью А, или аллелью а. В резульатате получаются зиготы АА, Аа, Аа, аа или АА, 2Аа, аа.
По внешнему виду (фенотипу) особи АА и Аа не отличаются, поэтому расщепление выходит в соотношении 3:1. По генотипу особи распределяются в соотношении 1АА:2Аа:аа. Понятно, что если от каждой группы особей второго поколения получать потомство только самоопылением, то первая (АА) и последняя (аа) группы (они гомозиготные) будут давать только однообразное потомство (без расщепления), а гетерозиготные (Аа) формы будут давать расщепление в соотношении 3:1.
Таким образом, второй закон Менделя, или закон расщепления, формулируется так: при скрещивании двух гибридов первого поколения, которые анализируются по одной альтернативной паре состояний признака, в потомстве наблюдается расщепление по фенотипу в соотношении 3:1 и по генотипу в соотношении 1:2:1.

Третий закон Менделя, или закон независимого наследования признаков.

Изучая расщепления при дигибридном скрещивании, Мендель обратил внимание на следующее обстоятельство. При скрещивании растений с желтыми гладкими (ААВВ) и зелеными морщинистыми (аа bb ) семенами во втором поколении появлялись новые комбинации признаков: желтые морщинистое (Аа bb ) и зеленые гладкие (ааВ b ), которые не встречались в исходных формах . Из этого наблюдения Мендель сделал вывод, что расщепление по каждой признаку происходит независимо от второго признака. В этом примере форма семян наследовалась независимо от их окраски. Эта закономерность получила название третьего закона Менделя, или закона независимого распределения генов.
Третий закон Менделя формулируется следующим образом: при скрещивании гомозиготных особей, отличающихся по двум (или более) признаках, во втором поколении наблюдаются независимое наследование и комбинирование состояний признаков, если гены, которые их определяют, расположенные в разных парах хромосом. Это возможно потому, что во время мейоза распределение (комбинирования) хромосом в половых клетках при их созревании идет независимо и может привести к появлению потомства с комбинацией признаков, отличных от родительских и прародительский особей.
Для записи скрещиваний нередко используют специальные решетки, которые предложил английский генетик Пеннет (решетка Пеннета). Ими удобно пользоваться при анализе полигибридних скрещиваний. Принцип построения решетки состоит в том, что сверху по горизонтали записывают гаметы отцовской особи, слева по вертикали - гаметы материнской особи, в местах пересечения - вероятные генотипы потомства.

В своих опытах по скрещиванию Мендель применял гибридологический метод. Используя этот метод, он изучал наследование по отдельным признакам, а не по всему комплексу, проводил точный количественный учет наследования каждого признака в ряду поколений, изучал характер потомства каждого гибрида в отдельности. Первый закон Менделя - закон единообразия гибридов первого поколения. При скрещивании гомозиготных особей, отличающихся по одной пареальтернативных (взаимоисключающих) признаков, все потомство в первом поколении единообразно как по фенотипу, так и по генотипу. Мендель проводил моногибридное скрещивание чистых линий гороха, отличающихся по одной паре альтернативных признаков, например, по цвету горошин (желтые и зеленые). В качестве материнского растения использовали горох с желтыми семенами (доминантный признак), а отцовского - горох с зелеными семенами (рецессивный признак). В результате мейоза каждое растение давало один сорт гамет. При мейозе из каждой гомологичной пары хромосом в гаметы отходило по одной хромосоме с одним из аллельных генов (А или а). В результате оплодотворения парность гомологичных хромосом восстановилась и образовались гибриды. Все растения имели семена только желтого цвета (по фенотипу) и были гетерозиготными по генотипу. Гибрид 1-го поколения Аа имел один ген - А от одного родителя, а второй ген -а от другого родителя и проявлял доминантный признак, скрывая рецессивный. По генотипу весь горох гетерозиготен. Первое поколение единообразно и проявило признак одного из родителей. Для записи скрещиваний применяют специальную таблицу, предложенную английским генетиком Пеннетом и называемую решеткой Пеннета. По горизонтали выписывают гаметы отцовской особи, по вертикали - материнской. В местах пересечений - вероятные генотипы потомков. В таблице число клеток зависит от числа типов гамет, образуемых скрещиваемыми особями. Далее Мендель скрестил гибриды между собой. Второй закон Менделя – закон расщепления гибридов. При скрещивании гибридов 1-го поколения между собой во втором поколении появляются особи как с доминантными, так и с рецессивными признаками, и происходит расщепление по генотипу в соотношении 3:1 и 1:2:1 по генотипу. В результате скрещивания гибридов между собой получились особи, как с доминантными признаками, так и с рецессивными. Такое расщепление возможно при полном доминировании.

ГИПОТЕЗА "ЧИСТОТЫ" ГАМЕТ

Закон расщепления можно объяснить гипотезой "чистоты" гамет. Явление несмешивания аллелей, альтернативных признаков в гаметах гетерозиготного организма (гибрида) Мендель назвал гипотезой "чистоты" гамет. За каждый признак отвечает два аллельных гена. При образовании гибридов(гетерозиготных особей) аллельные гены не смешиваются, а остаются в неизменном виде. Гибриды - Аа - в результате мейоза образуют два типа гамет. В каждую гамету идет одна из пары гомологичных хромосом с доминантным аллельным геном А или с рецессивным аллельным геном а. Гаметы чисты от другого аллельного гена. При оплодотворении мужские и женские гаметы, несущие доминантные и рецессивные аллели, свободно комбинируются. При этом восстанавливается гомологичность хромосом и аллельность генов. В результате взаимодействия генов и оплодотворения проявился рецессивный признак (зеленый цвет горошин), ген которого в гибридном организме не выявлял своего действия. Признаки, наследование которых происходит согласно закономерностям, установленым Менделем, называются менделирующими. Простые менделирующие признаки дискретны и контролируются моногенно - т.е. одним геном. У человека большое количество признаков наследуется по законам Менделя К доминантным признакам можно отнести карий цвет глаз, брадидактилию (короткие пальцы), полидактилию (многопалость, 6-7 пальцев), близорукость, способность синтезировать меланин. По законам Менделя по доминантному типу наследуются группа крови и резус-фактор. К рецессивным признакам относят голубой цвет глаз, нормальное строение кисти руки, наличие 5 пальцев на руке, нормальное зрение, альбинизм (неспособность синтезировать меланин)

Введение.

Генетика – наука, изучающая закономерности наследственности и изменчивости живых организмов.

Человеком давно отмечены три явления, относящиеся к наследственности: во-первых, сходство признаков потомков и родителей; во-вторых, отличия некоторых (иногда многих) признаков потомков от соответствующих родительских признаков; в-третьих, возникновение в потомстве признаков, которые были лишь у далеких предков. Преемственность признаков между поколениями обеспечивается процессом оплодотворения. С незапамятных времен человек стихийно использовал свойства наследственности в практических целях – для выведения сортов культурных растений и пород домашних животных.

Первые идеи о механизме наследственности высказали еще древнегреческие ученые Демокрит, Гиппократ, Платон, Аристотель. Автор первой научной теории эволюции Ж.-Б. Ламарк воспользовался идеями древнегреческих ученых для объяснения постулированного им на рубеже XVIII-XIX вв. принципа передачи приобретенных в течение жизни индивидуума новых признаков потомству. Ч. Дарвин выдвинул теорию пангенезиса, объяснявшую наследование приобретенных признаков

Чарльз Дарвин определял наследственность как свойство всех живых организмов передавать свои признаки и свойства из поколения в поколение, а изменчивость как свойство всех живых организмов приобретать в процессе индивидуального развития новые признаки.

Наследование признаков осуществляется через размножение. При половом размножении новые поколения возникают в результате оплодотворения. Материальные основы наследственности заключены в половых клетках. При бесполом или вегетативном размножении новое поколение развивается или из одноклеточных спор, или из многоклеточных образований. И при этих формах размножения связь между поколениями осуществляется через клетки, в которых заключены материальные основы наследственности (элементарные единицы наследственности) – гены – представляют собой участки ДНК хромосом.

Совокупность генов, которую организм получает от родителей, составляет его генотип. Совокупность внешних и внутренних признаков – это фенотип. Фенотип развивается в результате взаимодействия генотипа и условий внешней среды. Так или иначе основой остаются признаки которые несут в себе гены.

Закономерности, по которым признаки передаются из поколения в поколение, первым открыл великий чешский ученый Грегор Мендель. Он открыл и сформулировал три закона наследования, которые легли в основу современной генетики.

Жизнь и научные исследования Грегора Иоганна Менделя.

Моравский монах и генетик растений. Иоганн Мендель родился 1822 году в местечке Хейнцендорф (ныне Гинчице в Чехии), где его отец владел небольшим крестьянским наделом. Грегор Мендель, по свидетельству знавших его, действительно был добрым и приятным человеком. После получения начального образования в местной деревенской школе и позже, по окончании коллегии пиаристов в Лейпнике он был в 1834 году принял в Троппаунскую императорско-королевскую гимназию в первый грамматический класс. Четырьмя годами спустя родители Иоганна в результате стечения многих, быстро следовавших друг за другом, несчастливых событий были полностью лишены возможности возмещать необходимые расходы, связанные с учебой, а их сын, будучи тогда лишь 16 лет от роду, вынужден был совершенно самостоятельно заботиться о собственном содержании. В 1843 году Мендель был принят в Августинский монастырь святого Томаша в Альтбрюнне, где и принял имя Грегор. В 1846 году Мендель слушал также лекции по хозяйствованию, садоводству и виноградарству в Философском институте в Брюнне. В 1848 году, завершив курс богословия, с глубоким почтением Мендель получил разрешение готовиться к экзаменам на степень доктора философии. Когда же в следующем году он укрепился в намерении экзаменоваться, то ему было вручено предписание занять место супплента императорско-королевской гимназии в Цнайме, чему он последовал с радостью.

В 1851 году настоятель монастыря направил Менделя учиться в венский университет, где он, среди прочего, изучал ботанику. После окончания университета Мендель преподавал естественные науки в местной школе. Благодаря этому шагу его материальное положение в корне изменилось. В столь необходимом для каждых занятий благотворном благополучии физического существования к нему, с глубоким почтением, вернулись и мужество и силы, и он в течение пробного года штудировал предписанные классические предметы с большим прилежанием и любовью. В свободные часы занимался он маленьким ботанико-минералогическим собранием, предоставленным в монастыре в его распоряжение. Его пристрастие к области естествознания становилось тем большим, чем большие возможности получал он отдаваться ему. Хотя упомянутый в этих занятиях был лишен какого-либо руководства, а путь автодидакта здесь, как ни в какой иной науке, труден и ведет к цели медленно, все же за оное время Мендель приобрел такую любовь к изучению природы, что он не жалел уже сил для заполнения изменившихся у него пробелов путем самообучения и следуя советам людей, обладавших практическим опытом. 3 апреля 1851 года «учительский корпус» училища принял решение пригласить для временного замещения профессорской должности каноника монастыря святого Томаша господина Грегора Менделя. Помологические успехи Грегора Менделя дали ему право на звездный титул и на временное исполнение должности супплента по естественной истории в приготовительном классе Технического училища. В первом семестре учебы он занимался только десять часов в неделю и только у Доплера. Во втором семестре он занимался в неделю уже по двадцать часов. Из них десять – физикой у Доплера, пять в неделю – зоологией у Рудольфа Кнера. Одиннадцать часов в неделю – ботаникой у профессора Фенцля: кроме лекций по морфологии и систематике, он проходил еще специальный практикум по описанию и определению растений. В третьем семестре он записался уже на тридцать два часа занятий в неделю: десять часов – физика у Доплера, десять – химия у Роттенбахера: всеобщая химия, медицинская химия, фармакологическая химия и практикум по аналитической химии. Пять – на зоологию у Кнера. Шесть часов занятий у Унгера, одного из первых цитологов в мире. В его лабораториях он изучал анатомию и физиологию растений и проходил практикум по технике микроскопии. И еще - раз в неделю на кафедре математики – практикум по логарифмированию и тригонометрии.

1850 год, жизнь складывалась неплохо. Мендель уже мог сам себя содержать, и пользовался у коллег большим уважением, ибо хорошо справляться со своими обязанностями, и был очень приятен в общении. Его любили ученики.

В 1851 году Грегор Мендель замахнулся на кардинальный вопрос биологии – на проблему изменчивости и наследственности. Именно тогда он начал проводить опыты по направленному культивированию растений. Мендель доставлял различные растения из дальних и ближних окрестностей Брюнна. Культивировал растения по группам в специально отведенной для каждой из них части монастырского сада при различных внешних условиях. Он занимался кропотливыми метеонаблюдениями. Больше всего экспериментов и наблюдений Грегор проводил с горохом, который, начиная с 1854-го, из года в год каждую весну высевал в маленьком садике под окнами прелатуры. На горохе оказалось не сложно ставить четкий гибридизационный опыт. Для этого нужно лишь вскрыть пинцетом крупный, хоть еще и не дозревший цветок, оборвать пыльники, и самостоятельно предопределять ему «пару» для скрещивания. Поскольку самоопыление исключено, сорта гороха представляют собою, как правило, «чистые линии» с неизменяющимися от поколения к поколению константными признаками, которые очерчены крайне четко. Мендель выделил признаки, определявшие межсортовые различия: окраску кожуры зрелых зерен и – отдельно – зерен незрелых, форму зрелых горошин, цвет «белка» (эндоспермы), длину оси стебля, расположение и окраску бутонов. Тридцать с лишним сортов использовал он в эксперименте, и каждый из сортов предварительно был подвергнут двухлетнему испытанию на «константность» , на «постоянство признаков» , на «чистоту кровей» – в 1854-м и в 1855-м. Восемь лет шли эксперименты с горохом. Сотни раз за восемь цветений своими руками он аккуратно обрывал пыльники и, набрав на пинцет пыльцу с тычинок цветка другого сорта, наносил ее на рыльце пестика. На десять тысяч растений, полученных в итоге скрещиваний и от самоопылившихся гибридов, было заведено десять тысяч паспортов. Записи в них аккуратны: когда родительское растение выращено, какие цветы у него были, чьей пыльцой произведено оплодотворение, какие горошины – желтые или зеленые, гладкие или морщинистые – получены, какие цветы – окраска по краям, окраска в центре – распустились, когда получены семена, сколько из них желтых, сколько зеленых, круглых, морщинистых, сколько из них отобрано для посадки, когда они высажены и так далее.

Результатом его исследований стал доклад «Опыты над растительными гибридами», который был прочитан брюннским естествоиспытателем в 1865-м. В докладе сказано: «Поводом для постановки опытов, которым посвящена настоящая статья, послужило искусственное скрещивание декоративных растений, производившееся с целью получения новых, различающихся по окраске форм. Для постановки дальнейших опытов с целью проследить развитие помесей в их потомстве дала толчок бросающаяся в глаза закономерность, с которой гибридные формы постоянно возвращались к своим родоначальным формам». Как это нередко случается в истории науки, работа Менделя, не сразу получила должное признание у современников. Итоги его опытов были обнародованы на заседании Общества естественных наук города Брюнна, а затем опубликованы в журнале этого Общества, но идеи Менделя в то время не нашли поддержки. Номер журнала с описанием революционной работы Менделя в течение тридцати лет пылился в библиотеках. Лишь в конце XIX века ученые, занимавшиеся проблемами наследственности, открыли для себя труды Менделя, и он смог получить (уже посмертно) заслуженное признание.

Грегор Мендель в XIX веке, проводя исследования на горохе посевном, выявил три основные закономерности наследования признаков, которые носят название трех законов Менделя. Первые два закона касаются моногибридного скрещивания (когда берут родительские формы, отличающиеся только по одному признаку), третий закон был выявлен при дигибридном скрещивании (родительские формы исследуются по двум разным признакам).

Первый закон Менделя. Закон единообразия гибридов первого поколения

Мендель взял для скрещивания растения гороха, отличающиеся по одному признаку (например, по окраске семян). Одни имели желтые семена, другие - зеленые. После перекрестного опыления получаются гибриды первого поколения (F 1). Все они имели желтый цвет семян, т. е. были единообразны. Фенотипический признак, определяющий зеленый цвет семян, исчез.

Второй закон Менделя. Закон расщепления

Мендель посадил гибриды первого поколения гороха (которые все были желтыми) и позволил им самоопыляться. В итоге были получены семена, представляющие собой гибриды второго поколения (F 2). Среди них уже встречались не только желтые, но и зеленые семена, т. е. произошло расщепление. При этом отношение желтых к зеленым семенам было 3: 1.

Появление зеленых семян во втором поколении доказывало то, что этот признак не исчезал или растворялся у гибридов первого поколения, а существовал в дискретном состоянии, но просто был подавлен. В науку были введены понятия о доминантном и рецессивном аллеле гена (Мендель называл их по-другому). Доминантный аллель подавляет рецессивный.

У чистой линии желтого гороха два доминантных аллеля - AA. У чистой линии зеленого гороха два рецессивных аллеля - aa. При мейозе в каждую гамету попадает только один аллель. Таким образом, горох с желтыми семенами образует только гаметы, содержащие аллель A. Горох с зелеными семенами образует гаметы, содержащие аллель a. При скрещивании они дают гибриды Aa (первое поколение). Поскольку доминантный аллель в данном случае полностью подавляет рецессивный, то и наблюдался желтый цвет семян у всех гибридов первого поколения.

Гибриды первого поколения уже дают гаметы A и a. При самоопылении, случайно комбинируясь между собой, они образуют генотипы AA, Aa, aa. Причем гетерозиготный генотип Aa будет встречаться в два раза чаще (так как Aa и aA), чем каждый гомозиготный (AA и aa). Таким образом получаем 1AA: 2Aa: 1aa. Поскольку Aa дает желтый цвет семян как и AA, то выходит, что на 3 желтых приходится 1 зеленый.

Третий закон Менделя. Закон независимого наследования разных признаков

Мендель провел дигибридное скрещивание, т. е. взял для скрещивания растения гороха, отличающиеся по двум признакам (например, по цвету и морщинистости семян). Одна чистая линия гороха имела желтые и гладкие семена, а вторая - зеленые и морщинистые. Все их гибриды первого поколения имели желтые и гладкие семена.

Во втором поколении ожидаемо произошло расщепление (у части семян проявился зеленый цвет и морщинистость). Однако при этом наблюдались растения не только с желтыми гладкими и зелеными морщинистыми семенами, но и с желтыми морщинистыми, а также зелеными гладкими. Другими словами, произошла перекомбинация признаков, говорящая о том, что наследование цвета и формы семян происходит независимо друг от друга.

Действительно, если гены цвета семян находится в одной паре гомологичных хромосом, а гены, определяющие форму, - в другой, то при мейозе они могут независимо друг от друга комбинироваться. В результате гаметы могут содержать как аллели желтого цвета и гладкой формы (AB), так и желтого цвета и морщинистой формы (Ab), а также зеленой гладкой (aB) и зеленой морщинистой (ab). При комбинации гамет между собой с разной вероятностью образуется девять типов гибридов второго поколения: AABB, AABb, AaBB, AaBb, AAbb, Aabb, aaBB, aaBb, aabb. При этом по фенотипу будет наблюдаться расщепление на четыре типа в отношении 9 (желтых гладких) : 3 (желтых морщинистых) : 3 (зеленых гладких) : 1 (зеленых морщинистых). Для наглядности и подробного анализа строят решетку Пеннета.