Замена неизвестного при решении рациональных уравнений. Интегрирование методом замены переменной

Замена переменной в неопределенном интеграле. Формула преобразования дифференциалов. Примеры интегрирования. Примеры линейных подстановок.

Метод замены переменной

С помощью замены переменной можно вычислить простые интегралы и, в некоторых случаях, упростить вычисление более сложных.

Метод замены переменной заключается в том, что мы от исходной переменной интегрирования, пусть это будет x , переходим к другой переменной, которую обозначим как t . При этом мы считаем, что переменные x и t связаны некоторым соотношением x = x(t) , или t = t(x) . Например, x = ln t , x = sin t , t = 2 x + 1 , и т.п. Нашей задачей является подобрать такую зависимость между x и t , чтобы исходный интеграл либо свелся к табличному, либо стал более простым.

Основная формула замены переменной

Рассмотрим выражение, которое стоит под знаком интеграла. Оно состоит из произведения подынтегральной функции, которую мы обозначим как f(x) и дифференциала dx : . Пусть мы переходим к новой переменной t , выбрав некоторое соотношение x = x(t) . Тогда мы должны выразить функцию f(x) и дифференциал dx через переменную t .

Чтобы выразить подынтегральную функцию f(x) через переменную t , нужно просто подставить вместо переменной x выбранное соотношение x = x(t) .

Преобразование дифференциала выполняется так:
.
То есть дифференциал dx равен произведению производной x по t на дифференциал dt .

Тогда
.

На практике, чаще всего встречается случай, в котором мы выполняем замену, выбирая новую переменную как функцию от старой: t = t(x) . Если мы догадались, что подынтегральную функцию можно представить в виде
,
где t′(x) - это производная t по x , то
.

Итак, основную формулу замены переменной можно представить в двух видах.
(1) ,
где x - это функция от t .
(2) ,
где t - это функция от x .

Важное замечание

В таблицах интегралов переменная интегрирования, чаще всего, обозначается как x . Однако стоит учесть, что переменная интегрирования может обозначаться любой буквой. И более того, в качестве переменной интегрирования может быть какое либо выражение.

В качестве примера рассмотрим табличный интеграл
.

Здесь x можно заменить любой другой переменной или функцией от переменной. Вот примеры возможных вариантов:
;
;
.

В последнем примере нужно учитывать, что при переходе к переменной интегрирования x , дифференциал преобразуется следующим образом:
.
Тогда
.

В этом примере заключена суть интегрирования подстановкой. То есть мы должны догадаться, что
.
После чего интеграл сводится к табличному.
.

Можно вычислить этот интеграл с помощью замены переменной, применяя формулу (2) . Положим t = x 2 + x . Тогда
;
;

.

Примеры интегрирования заменой переменной

1) Вычислим интеграл
.
Замечаем, что (sin x)′ = cos x . Тогда

.
Здесь мы применили подстановку t = sin x .

2) Вычислим интеграл
.
Замечаем, что . Тогда

.
Здесь мы выполнили интегрирование заменой переменной t = arctg x .

3) Проинтегрируем
.
Замечаем, что . Тогда

. Здесь, при интегрировании, произведена замена переменной t = x 2 + 1 .

Линейные подстановки

Пожалуй, самыми распространенными являются линейные подстановки. Это замена переменной вида
t = ax + b ,
где a и b - постоянные. При такой замене дифференциалы связаны соотношением
.

Примеры интегрирования линейными подстановками

A) Вычислить интеграл
.
Решение.
.

B) Найти интеграл
.
Решение.
Воспользуемся свойствами показательной функции .
.
ln 2 - это постоянная. Вычисляем интеграл.

.

C) Вычислить интеграл
.
Решение.
Приведем квадратный многочлен в знаменателе дроби к сумме квадратов.
.
Вычисляем интеграл.

.

D) Найти интеграл
.
Решение.
Преобразуем многочлен под корнем.

.
Интегрируем, применяя метод замены переменной .

.
Ранее мы получили формулу
.
Отсюда
.
Подставив это выражение, получим окончательный ответ.

Урок и презентация на тему: "Метод замены переменной. Примеры"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 11 класса
1С: Школа. Решаем задачи по геометрии. Интерактивные задания на построение в пространстве для 10–11 классов
Алгебраические задачи с параметрами, 9–11 классы

Этот метод довольно часто встречается при решении уравнений, и мы с вами им не раз пользовались.Его можно использовать в следующих случаях:

  • Если исходное уравнение $f(x)=0$ имеет сложный вид, но его удалось преобразовать к уравнению вида $h(g(x))=0$.
  • Нужно произвести замену переменных $u=g(x)$.
  • Решить уравнение $h(u)=0$, найти корни $u_1$, $u_2$, … $u_n$.
  • Ввести обратную замену $g(x)=u_1$, $g(x)=u_2$, … , $g(x)=u_n$.
  • Решить каждое из уравнений $g(x)=u_1$, $g(x)=u_2$, … , $g(x)=u_n$. Корни каждого из уравнений и будут решениями исходного уравнения.
Метод замены переменной, требует хорошего навыка и опыта работы с уравнениями. После решения большого количества уравнений общий вид этих уравнений хорошо запоминается и придумать замену, приводящую к уже известным уравнениям, становится гораздо проще. Стоит также проверять все корни, полученные при замене уравнений и только после этого возвращаться к исходной переменной.

Пример.
Решить уравнение: $8x^6+7x^3-1=0$.

Решение.
Введем замену $y=x^3$. Тогда наше уравнение сводится к квадратному уравнению:
$8y^2+7y-1=0$,
$(8y-1)(y+1)=0$,
$y_1=\frac{1}{8}$ и $y_2=-1$.

На данном этапе при решении более сложных уравнений следует проверить полученные корни.
Введем обратную замену: $x^3=\frac{1}{8}$ и $x^3=-1$.
Корни данных уравнений найти легко: $x_1=\frac{1}{2}$ и $x_2=-1$.

Ответ: $х=0,5$ и $х=-1$.

Пример.
Решить уравнение: $\sqrt{\frac{2x+3}{2x-1}}+4\sqrt{\frac{2x-1}{2x+3}}=4$.

Решение.
Проведем равносильные преобразования:
$\sqrt{\frac{2x-1}{2x+3}}=(\frac{2x-1}{2x+3})^{\frac{1}{2}}=(\frac{2x+3}{2x-1})^{-\frac{1}{2}}=((\frac{2x+3}{2x-1})^{\frac{1}{2}})^{-1}=\frac{1}{\sqrt{\frac{2x+3}{2x-1}}}$.

Введем замену: $u=\sqrt{\frac{2x+3}{2x-1}}$, тогда наше уравнение сводится к $u+\frac{4}{u}=4$. $u^2-4u+4=0$, откуда $u=2$.

Введем обратную замену: $\sqrt{\frac{2x+3}{2x-1}}=2$.

$2x+3=4(2x-1)$, решив линейное уравнение $х=1\frac{1}{6}$.

Пример.
Решить уравнение: $2^x+2^{1-x}=3$.

Решение.
Наше уравнение сводится к равносильному уравнению: $2^x+\frac{2}{2^x}=3$.

Введем замену: $t=2^x$.
$t+\frac{2}{t}=3$,
$t^2-3t+2=0$,
$(t-2)(t-1)=0$,
$t_1=2$ и $t_2=1$.

Введем обратную замену: $2^x=2$ и $2^x=1$. Откуда: $х=1$ и $х=0$.

Ответ: $х=1$ и $х=0$.

Пример.
Решить уравнение: $lg^2(x^2)+lg(10x)-6=0$.

Решение.
Преобразуем наше уравнение.
$lg^2(x^2)=(lg(x^2))^2=(2lg(x))^2=4lg^2x$.
$lg(10x)=lg10+lgx=1+lgx$.

Исходное уравнение равносильно уравнению: $4lg^2x+lgx-5=0$.

Введем замену: $u=lg(x)$.
$4u^2+u-5=0$,
$(4u+5)(u-1)=0$.

Введем обратную замену: $lgx=-1,25$ и $lgx=1$.
Ответ: $x=10^{-\frac{5}{4}}$ и $x=10$.

Пример.
Решить уравнение: $sin(x)cos(x)-6sin(x)+6cos(x)+6=0$.

Решение.
Введем замену: $cos(x)-sin(x)=y$.

Тогда: $(cos(x)-sin(x))^2=1-2sin(x)cos(x)$.
$sin(x)cos(x)=\frac{1-y^2}{2}$.

Исходное уравнение равносильно:
$\frac{1-y^2}{2}+6y+6=0$,
$1-y^2+12y+12=0$,
$y^2-12y-13=0$,
$(y-13)(y+1)=0$.

Введем обратную замену: $cos(x)-sin(x)=13$ - очевидно, что решений нет, так как косинус и синус ограничены по модулю единицей.

$cos(x)-sin(x)=-1$ - умножим обе части уравнения на $\frac{\sqrt{2}}{2}$.
$\frac{\sqrt{2}}{2}cos(x)-\frac{\sqrt{2}}{2}sin(x)=-\frac{\sqrt{2}}{2}$.
$sin(\frac{π}{4}-x)=-\frac{\sqrt{2}}{2}$.
$\begin {cases} \frac{π}{4}-x=-\frac{π}{4}+2πn, \\ \frac{π}{4}-x=-\frac{3π}{4}+2πn. \end {cases}$
$\begin {cases} x=\frac{π}{2}+2πn, \\ x=π+2πn. \end {cases}$

Ответ: $x=\frac{π}{2}+2πn$ и $π+2πn$.

Задачи для самостоятельного решения

Решить следующие уравнения:
1. $x^8+3x^4-4=0$.

2. $\sqrt{\frac{5x-1}{x+3}}+5\sqrt{\frac{x+3}{5x-1}}=6$.

3. $5^x+5^{2x+1}=-4$.
4. $2cos^2(x)-7cos-4=0$.
5. $5sin(2x)-11sin(x)=11cos(x)-7$.

Математика – это скважина, через которую логический ум может подглядывать за идеальным миром.

Кротов Виктор

В школе ведущее место в курсе алгебры занимают рациональные уравнения. Именно на их изучение времени отводится больше, чем на любые другие темы. Связано это в первую очередь с тем, что уравнения имеют не только важное теоретическое значение, но и служат многим практическим целям. Огромное количество задач реального мира сводятся именно к решению различных уравнений, и только после того, как вы овладеете способами их решения, вы найдете ответы на различные вопросы науки и техники.

Для формирования умения решать рациональные уравнения самостоятельная работа ученика имеет огромное значение. Однако перед тем как переходить именно к самостоятельной работе, необходимо четко знать и уметь применять на практике все возможные методы решения рациональных уравнений.

Рассмотрим подробно на примерах метод замены переменных для решения рациональных уравнений.

Пример 1.

Решить уравнение (2x 2 – 3x + 1) 2 = 22x 2 – 33x + 1.

Решение.

Перепишем уравнение в виде

(2x 2 – 3x + 1) 2 = 11(2x 2 – 3x) + 1. Сделаем замену. Пусть 2x 2 – 3x = t, тогда уравнение примет вид:

(t + 1) 2 = 11t + 1.

Теперь раскроем скобки и приведем подобные, получим:

t 2 + 2t + 1 = 11t + 1;

В получившемся неполном квадратном уравнении вынесем общий множитель за скобки, будем иметь:

t = 0 или t = 9.

Теперь необходимо сделать обратную замену и решить каждое из полученных уравнений:

2x 2 – 3x = 0 или 2x 2 – 3x = 9

x(2x – 3) = 0 2x 2 – 3x – 9 = 0

x = 0 или x = 3/2 x = 3 или x = -3/2

Ответ: -1,5; 0; 1,5; 3.

Пример 2.

Решить уравнение (x 2 – 6x) 2 – 2(x – 3) 2 = 81.

Решение.

Применим формулу квадрата разности (a – b) 2 = a 2 – 2ab + b 2 . Запишем исходное уравнение в виде

(x 2 – 6x) 2 – 2(x 2 – 6x + 9) = 81. Теперь можно сделать замену.

Пусть x 2 – 6x = t, тогда уравнение будет иметь вид:

t 2 – 2(t + 9) = 81.

t 2 – 2t – 18 – 81 = 0;

t 2 – 2t – 99 = 0.

По теореме Виета корнями полученного уравнения будут числа -9 и 11.

Сделаем обратную замену:

x 2 – 6x = -9 или x 2 – 6x = 11

x 2 – 6x + 9 = 0 x 2 – 6x – 11 = 0

(x – 3) 2 = 0 D = 80

x = 3 x 1 = 3 + 2√5; x 2 = 3 – 2√5.

Ответ: 3 – 2√5; 3; 3 + 2√5.

Пример 3.

Решить уравнение (x – 1)(x – 3)(x + 5)(x + 7) = 297 и найти произведение его корней.

Решение.

Найдем «выгодный» способ группировки множителей и раскроем пары скобок:

((x – 1)(x + 5))((x – 3)(x + 7)) = 297;

(x 2 + 5x – x – 5)(x 2 + 7x – 3x – 21) = 297;

(x 2 + 4x – 5)(x 2 + 4x – 21) = 297.

Cделаем замену x 2 + 4x = t, тогда уравнение будет выглядеть следующим образом:

(t – 5)(t – 21) = 297.

Раскроем скобки, приведем подобные слагаемые:

t 2 – 21t – 5t + 105 = 297;

t 2 – 26t – 192 = 0.

По теореме Виета определяем, что корнями полученного уравнения будут числа -6 и 32.

После обратной замены будем иметь:

x 2 + 4x = -6 или x 2 + 4x = 32

x 2 + 4x + 6 = 0 x 2 + 4x – 32 = 0

D = 16 – 24 < 0 D = 16 + 128 > 0

Нет корней x 1 = -8; x 2 = 4

Найдем произведение корней: -8 · 4 = -32.

Ответ: -32.

Пример 4.

Найти сумму корней уравнения (x 2 – 2x + 2) 2 + 3x(x 2 – 2x + 2) = 10x 2 .

Решение.

Пусть x 2 – 2x + 2 = t, тогда уравнение примет вид:

t 2 + 3xt – 10x 2 = 0.

Рассмотрим полученное уравнение как квадратное относительно t.

D = (3x) 2 – 4 · (-10x 2) = 9x 2 + 40x 2 = 49x 2 ;

t 1 = (-3x – 7x) / 2 и t 2 = (-3x + 7x) / 2;

t 1 = -5x и t 2 = 2x.

Так как t = x 2 – 2x + 2, то

x 2 – 2x + 2 = -5x или x 2 – 2x + 2 = 2x. Решим каждое из полученных уравнений.

x 2 + 3x + 2 = 0 или x 2 – 4x + 2 = 0.

Оба уравнения имеют корни, т.к. D > 0.

С помощью теоремы Виета можно сделать вывод, что сумма корней первого уравнения равна -3, а второго уравнения 4. Получаем, что сумма корней исходного уравнения равна -3 + 4 = 1

Ответ: 1.

Пример 5.

Найти корень уравнения (x + 1) 4 + (x + 5) 4 = 32, принадлежащий промежутку [-5; 10].

Решение.

Пусть x = t – 3, тогда x + 1 = t – 2; x + 5 = t + 2 и исходное уравнение принимает вид:

(t – 2) 4 + (t + 2) 4 = 32. Для возведения выражений в четвертую степень можно воспользоваться треугольником Паскаля (рис. 1);

(t – 2) 4 = t 4 – 4t 3 · 2 + 6t 2 · 2 2 – 4t · 2 3 + 2 4 ;

(t + 2) 4 = t 4 + 4t 3 · 2 + 6t 2 · 2 2 + 4t · 2 3 + 2 4 .

После приведения подобных слагаемых получим:

2t 4 – 2 · 6t 2 · 2 2 + 2 · 2 4 = 32;

t 4 + 6t 2 · 2 2 + 2 4 = 16;

t 4 + 24t 2 + 16 = 16;

t 4 + 24t 2 = 0;

t 2 (t 2 + 24) = 0;

t = 0 или t 2 = -24.

Второе уравнение не имеет корней, а значит t = 0 и после обратной замены

x = t – 3 = 0 – 3 = -3. Корень уравнения -3 принадлежит промежутку [-5; 10].

Ответ: -3.

Как видим, при решении рациональных уравнений необходимо знать приведенные выше формулы и уметь правильно считать. Ошибки же чаще всего возникают при выборе замены и при обратной подстановке. Чтобы этого избежать, нужно расписывать подробно каждое действие, тогда ошибок в ваших решениях не будет.

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.