Думай как фрик. Нестандартные способы решения проблем. Нестандартные способы решения квадратного уравнения

Муниципальный конкурс исследовательских и творческих работ школьников

«Шаг в науку»

Секция МАТЕМАТИКИ

Тема : Нестандартные методы решения иррациональных

уравнений.

Нуждина Мария, МАОУ СОШ №2

10 класс, п. Карымское

Научный руководитель: Васильева Елена Валерьевна,

учитель математики

МАОУ СОШ №2, п. Карымское

п. Карымское, 2013

    Аннотация………………………………………………………………….3

    План исследования…………………………………………………….......4-5

    Описание работы:

§1. Основные приемы решения иррациональных уравнений………………6-9

§2. Решение иррациональных уравнений методом замены неизвестного…10-14

§3. Иррациональные уравнения, сводимые к модулю ………….15-17

§4. Разложение на множители…………………………………………...…..18-19

§5. Уравнения вида ………………………………………20-22

§6. Теорема о среднем геометрическом в иррациональных уравнениях

; ……………………………23-24

4) Список литературы…………………………………………………….....25

Аннотация.

Тема нашей исследовательской работы: «Нестандартные приемы решения иррациональных уравнений».

При выполнении работы было необходимо: сравнивать различные методы решения; переходить от общих методов к частным, и наоборот; аргументировать и доказывать выдвинутые утверждения; изучать и обобщать информацию, собранную из различных источников. В связи с этим можно выделить следующие методы исследовательской деятельности: эмпирическое; логическое и теоретическое (исследование); пошаговое; репродуктивное и эвристическое;

В результате проведенной работы получены следующие результаты и выводы :

    Существует множество приемов для решения иррациональных уравнений;

    Не все иррациональные уравнения решаются с помощью стандартных приемов;

    Мы изучили часто встречающиеся замены, с помощью которых сложные иррациональные уравнения сводятся с простейшим;

    Мы рассмотрели нестандартные приемы решения иррациональных уравнений

Тема: «Нестандартные приемы решения иррациональных уравнений»

Нуждина М.П., Забайкальский край, п. Карымское, МАОУ СОШ №2, 10 класс.

План исследования.

Объектной областью , в которой мы проводили исследование, является алгебра. Объект исследования - решение уравнений. Среди множества уравнений мы рассмотрели иррациональные уравнения - предмет нашего исследования.

В школьном курсе алгебры рассматриваются только стандартные методы и приемы решения (возведенные в степень и простые приемы замены). Но в процессе исследования выяснилось, что существуют иррациональные уравнения, для решения которых стандартных приемов и методов недостаточно. Такие уравнения решаются с помощью других, более рациональных, методов.

Поэтому считаем, что изучение таких приемов решения - нужная и интересная работа.

В процессе исследования выяснилось, что иррациональных уравнений великое множество и сгруппировать их по видам и методам проблематично.

Целью исследования является изучение и систематизирование методов решения иррациональных уравнений.

Гипотеза : Если знать нестандартные методы решения иррациональных уравнений, то это позволит повысить качество выполнения некоторых олимпиадных и тестовых заданий ЕГЭ.

Для достижения поставленных целей и проверки гипотезы необходимо решить следующие задачи :

Охарактеризовать виды иррациональных уравнений.

Установить связи между видами и методами решения.

Оценить значение проверки и нахождения ОДЗ.

Рассмотреть нестандартные случаи при решении иррациональных уравнений (теорема о средней геометрической, свойства монотонности функций).

В процессе исследования было изучено множество учебных пособий таких авторов как М.И.Сканави,И.Ф.Шарыгина,О.Ю.Черкасова,А.Н.Рурукина,И.Т.Бородуля, а так же статьи из научно-теоретического и методического журнала «Математика в школе».

Тема: «Нестандартные приемы решения иррациональных уравнений»

Нуждина М.П., Забайкальский край, п. Карымское, МАОУ СОШ №2, 10 класс.

Описание работы.

§1 Основные приемы решения иррациональных уравнений

Уравнение y(x)=0 является иррациональным, если функция y(x) содержит корни из неизвестной величины x или выражений, зависящих от x.

Многие иррациональные уравнения могут быть решены, основываясь только на понятиях корня и области допустимых значений уравнения (ОДЗ), но встречаются и другие методы, некоторые из них будут рассмотрены в работе.

Основным приемом решения иррациональных уравнений считается уединение в одной части уравнения радикала, последующее возведение обоих частей уравнения в соответствующую степень. Если таких радикалов несколько, то уравнение необходимо возводить в исходную степень неоднократно, кстати, при этом нет нужды заботиться о том, чтобы выражение, стоящее под знаком уединенного радикала, было бы неотрицательно.

Однако при возведении в четную степень могут возникнуть посторонние корни, то есть корни, не являющиеся решением исходного уравнения.

Поэтому при использовании такого приема решения, корни должны быть обязательно проверены и посторонние отброшены, в этом случае проверка является элементом решения и необходима даже в тех случаях, когда лишние корни не появились, но ход решения был таков, что они могли появиться. С другой стороны, иногда легче сделать проверку, чем доказывать, что она необходима.

Рассмотрим несколько примеров:

Ответ: корней нет

–посторонний корень

В этих примерах мы рассмотрели стандартные методы решения иррациональных уравнений(возведение обеих частей в степень и проверка корней).

Однако, многие иррациональные уравнения могут быть решены,

основываясь только на понятиях корня и ОДЗ уравнения.

Так как в уравнение входят радикалы только четных степеней, то достаточно решить систему неравенств.

3х -2х 2 +5 ≥0 (условия ОДЗ уравнения)

4х 2 -26х +40 ≥0

Решая эту систему неравенств получим:

х € Откуда х = 2,5.

х € (-∞ ; 2,5] ᴗ , отрезки, интервалы и полуинтервалы.

Пример 2.1.1 Решите уравнение

. (1)

Решение. Очевидно, что х ≤ 0 не может являться решением данного уравнения, так как тогда . Для х > 0 функция непрерывна и строго возрастает, как произведение двух непрерывных положительных строго возрастающих для этих х функций f(x) = х и . Значит, в области х > 0 функция принимает каждое свое значение ровно в одной точке. Легко видеть, что х = 1 является решением данного уравнения, следовательно, это его единственное решение.

Ответ: {1}.

Пример 2.1.2Решите неравенство

. (2)

Решение. Каждая из функций у = 2 x , у = 3 x , у = 4 х непрерывная и строго возрастающая на всей оси. Значит, такой же является и исходная функция . Легко видеть, что при х = 0 функция принимает значение 3. В силу непрерывности и строгой монотонности этой функции при х > 0 имеем , при х < 0 имеем . Следовательно, решениями данного неравенства являются все х < 0.

Ответ: (-∞; 0).

Пример 2.1.3 Решите уравнение

. (3)

Решение. Область допустимых значений уравнения (3) есть промежуток . На ОДЗ функции и непрерывны и строго убывают, следовательно, непрерывна и убывает функция . Поэтому каждое свое значение функция h(x) принимает только в одной точке. Так как, то х = 2 является единственным корнем исходного уравнения.

При решении уравнений и неравенств свойство ограниченности снизу или сверху функции на некотором множестве часто играет определяющую роль.

Если существует число C такое, что для любого выполняется неравенство f (x) ≤ C, то функция f называется ограниченной сверху на множестве D (рисунок 2).


Рисунок 2

Если существует число c такое, что для любого выполняется неравенство f (x) ≥ c, то функция f называется ограниченной снизу на множестве D (рисунок 3).

Рисунок 3

Функция, ограниченная и сверху, и снизу, называется ограниченной на множестве D. Геометрически ограниченность функции f на множестве D означает, что график функции y = f (x), лежит в полосе c ≤ y ≤ C (рисунок 4).

Рисунок 4

Если функция не является ограниченной на множестве, то говорят, что она не ограничена.

Примером функции, ограниченной снизу на всей числовой оси, является функция y = x 2 . Примером функции, ограниченной сверху на множестве (–∞; 0) является функция y = 1/x. Примером функции, ограниченной на всей числовой оси, является функция y = sin x.

Пример 2.2.1 Решите уравнение

sin(x 3 + 2х 2 + 1) = х 2 + 2х + 2. (4)

Решение. Для любого действительного числа х имеем sin(x 3 + 2х 2 + 1) ≤ 1, х 2 + 2х + 2 = (x + 1) 2 +1 ≥ 1. Поскольку для любого значения х левая часть уравнения не превосходит единицы, а правая часть всегда не меньше единицы, то данное уравнение может иметь решение только при .

При , , т.е. при уравнение (4) так же корней не имеет.

Пример 2.2.2 Решите уравнение

. (5)

Решение. Очевидно, что х = 0, х = 1, х = -1 являются решениями данного уравнения. Для нахождения других решений в силу нечетности функции f(х) = = x 3 - x - sinπx достаточно найти его решения в области х > 0, х ≠ 1, поскольку если x 0 > 0 является его решением, то и (-x 0) также является его решением.

Разобьем множество х > 0, х ≠ 1, на два промежутка: (0; 1) и (1; +∞)

Перепишем начальное уравнение в виде x 3 - x = sinπx. На промежутке (0; 1) функция g(х) = x 3 - x принимает только отрицательные значения, поскольку х 3 < < х, а функция h(x) = sinπx только положительные. Следовательно, на этом промежутке уравнение не имеет решений.

Пусть х принадлежит промежутку (1; +∞). Для каждого из таких значений х функция g(х) = х 3 - х принимает положительные значения, функция h(x) = sinπxпринимает значения разных знаков, причем на промежутке (1; 2] функция h(x) = sinπx неположительна. Следовательно, на промежутке (1; 2] уравнение решений не имеет.

Если же х > 2, то |sinπx| ≤ 1, x 3 - x = x(x 2 - 1) > 2∙3 = 6, а это означает, что и на промежутке (1; +∞) уравнение также не имеет решений.

Итак, x = 0, x = 1 и x = -1 и только они являются решениями исходного уравнения.

Ответ: {-1; 0; 1}.


Пример 2.2.3 Решите неравенство

Решение. ОДЗ неравенства есть все действительные x, кроме x = -1. Разобьем ОДЗ неравенства на три множества: -∞ < x < -1, -1 < x ≤ 0, 0 < x < +∞ и рассмотрим неравенство на каждом из этих промежутков.

Пусть -∞ < x < -1. Для каждого из этих x имеем g(x) = < 0, а f(x) = 2 x > 0. Следовательно, все эти x являются решениями неравенства.

Пусть -1 < x ≤ 0. Для каждого из этих x имеем g(x) = 1 - , а f(x) = 2 x ≤ 1. Следовательно, ни одно из этих x не является решением данного неравенства.

Пусть 0 < x < +∞. Для каждого из этих x имеем g(x) = 1 - , a . Следовательно, все эти x являются решениями исходного неравенства.

Ответ: .

Функция f (x) называется периодической с периодом T ≠ 0, если выполняются два условия:

· если , то x + T и x – T также принадлежат области определения D (f (x));

· для любого выполнено равенство


f (x + T) = f (x).

Поскольку то из приведенного определения следует, что

Если T – период функции f (x), то очевидно, что каждое число nT, где , n ≠ 0, также является периодом этой функции.

Наименьшим положительным периодом функции называется наименьшее из положительных чисел T, являющихся периодом данной функции.

График периодической функции

График периодической функции обычно строят на промежутке уравнение (1) решений не имеет.

Если же Х>2, то sinпХ≤1, X3 – X=(Х2 – 1)>2*3=6, а это означает, что и на промежутке (2;+~) уравнение (1) также не имеет решений. Итак, Х=0, Х=1 и Х= - 1и только они являются решениями исходного уравнения.

Ответ: Х1=0,Х2=1, Х3= -1.

Пример3: Решить уравнение.

2 sinпХ=Х – п/2 – Х+п/2. (2)

Решение: Обозначим =Х – п/2 – Х+п/2 через f(X). Из определения абсолютной величины следует, что f (X)=п при Х≤ - п/2, f(Х)= -2Х при – п/2

Рассмотрим Х из промежутка (- п/2,п/2). На этом промежутке уравнение (2) можно переписать в виде 2 sinпХ= - 2Х, т. е. в виде.

sinХ= - Х/п. (3)

Ясно, что Х=0 есть решение уравнения (3), а значит, и исходного уравнения. Докажем, что других решений уравнение (3) на промежутке (- п/2;п/2) не имеет.

Для Х≠0 уравнение (3) равносильно уравнению.

Для любого значения ХЄ(- п/2;0)U(0;п/2), функция f(X)=sinX/Х принимает только положительные значения, поэтому уравнение (3) не имеет решений на множестве (- п/2;0)U(0;п/2).

Ответ: Х=0; Х=(-1)пп/6+Пn, n= 1,2…;=(-1)m+1п/6+Пm, m=1,2…

Заключение.

В ходе изучения данной темы, я сделала следующий вывод, нестандартные приемы решения уравнений позволяют получить результат более рациональным способом.

При использовании нестандартных методов решение занимает меньше времени, а также оно более интересно.

Список использованной литературы.

, . «Задачи по математике. Уравнения и неравенства».

«Математика на устном экзамене».

, «Задачи на составление уравнений».

, «Уравнения и неравенства».

, «Математика. Методы решения задач».

Соловьёв А. Ф. «Уравнительные вычисления».