Использование геоинформационной системы в экологии. Курс «ГИС в экологии. Инструменты ArcGIS


Система единого экологического мониторинга (ЕЭМ) является основным инструментом для решения проблем взаимодействия человека и окружающей среды, ресурсо- и энергосбережения, рационального природопользования, особенно в промышленно развитых районах с напряженной экологической обстановкой, для реализации концепции обеспечения экологической безопасности жизнедеятельности на глобальном, региональном и объектовом уровнях, имеющей много аспектов: от философских и социальных до медико-биологических, экономических и инженерно-технических. Центральным звеном системы ЕЭМ, во многом определяющим ее эффективное функционирование, является информационная система.
Рассмотрим принципы построения ГИС ЕЭМ для региона городского типа. Для реализации комплексного подхода к решению задачи обеспечения экологической безопасности она в общем случае должна содержать следующие взаимосвязанные структурные звенья: базы и банки данных экологической, правовой, медико-биологической, санитарно-гигиенической, технико-экономической направленностей; блок моделирования и оптимизации промышленных объектов; блок восстановления по данным измерений и прогноза распространения полей экологических и метеорологических факторов;
¦ блок принятия решений.
Для административных органов регионального управления можно выделить ряд функций, по которым возникает необходимость информационной поддержки принимаемых решений в области экологической безопасности жизнедеятельности населения, рационального энергопользования и энергосбережения. К таким функциям можно отнести: отчетность о результатах выполнения работ в рамках социально-экологического состояния региона и мерах по его улучшению; контроль текущего состояния окружающей среды, превышения предельно допустимых концентраций вредных и тому подобных веществ на подведомственной территории; планирование (годовое, квартальное) программ социального развития, изучения качества жизни населения, повышения экологической безопасности жизнедеятельности населения в регионе; управление в повседневной административной деятельности (разбор претензий, жалоб и конфликтов с юридическими и физическими лицами).
Для выполнения вышеперечисленных функций требуется полная и достоверная информация Потоки информации, необходимой для адекватной оценки складывающейся ситуации и принятия управляющих или корректирующих решений, проходят разные стадии: получение, обработка и отображение информации, оценка ситуации и принятие решений. Столь многофункциональная система с большими объемами географически привязанной информации может быть эффективно реализована только с применением рассмотренных выше современных геоинформационных технологий.
Комплексность экологических проблем, связывая воедино задачи, решаемые разными специалистами, требует системного подхода к их решению, проявляющегося в конкретных действиях специалистов каждой отрасли. Структура информационного обеспечения системы экологического мониторинга отражает эту специфику. По функциональному назначению его целесообразно разделить на проблемно-ориентированные блоки (или применительно к терминологии ГИС-слои) информации отдельных региональных служб, включая архитектурно-планировочные, коммунальные, инженерного обеспечения и др.
Информационное обеспечение системы ЕЭМ должно содержать следующие тематические слои информации (рис. 13.6). общая экологическая характеристика (атмосферный воздух, водоемы, почва, санитарно-эпидемиологические условия и др.); источники негативного воздействия на окружающую среду (выбросы и сбросы, твердые отходы и др.); зонирование территорий (объекты производственного назначения, селитебные территории, административные здания и др.); система охранных территорий (памятники истории и архитектуры, водоохранные зоны и др); инженерно-технические и транспортные коммуникации (магистрали наземного и подземного видов транспорта, теплотрассы, линии электропередачи и др); здравоохранение и социально-бытовые условия; нормативные и правовые документы, перспективы развития региона
Одним из важнейших элементов системы являются данные об объективном состоянии окружающей среды. Для примера рассмотрим структуру баз данных с показателями качества атмосферного

Рис 13 6 Тематическая информация в региональной системе ЕЭМ

воздуха. Состояние атмосферного воздуха характеризуется в первую очередь результатами экспериментального определения наличия в нем тех или иных загрязняющих веществ и их концентраций. Данная информация складывается из результатов периодического пробоотборного анализа, проводимого в регионе соответствующими государственными организациями (например, органами санитарно- эпидемиологического надзора), и данных, поступающих со стационарных постов непрерывных экологических наблюдений. Поэтому картографическая база данных по контролю атмосферы должна содержать полную информацию о местах контроля (адрес точек отбора проб), времени проведения замеров, погодных условиях в момент забора пробы, концентрации измерявшихся ингредиентов. На основе такой информации современные ГИС позволяют решать задачи интерполяции - восстановления непрерывных полей по дискретным данным, задачи комплексной оценки воздействия на экологическую ситуацию региона полей загрязнений различных ингредиентов и др.
Тематическая информация, касающаяся расположения и конфигурации основных источников загрязнения окружающей среды, должна быть представлена соответствующими электронными картами. В связанных с ними таблицах целесообразно хранить общие сведения о предприятиях региона (название, адрес, администрация и т.д.). Такие базы данных в совокупности с соответствующими картами позволяют получать ответы на следующие запросы: что представляет собой объект, выделенный на карте; где он расположен; какие объекты выбрасывают определенные вредные вещества; какие предприятия выбрасывают данное вредное вещество в объеме больше заданного; какие вещества выбрасывает данное предприятие и в каком объеме; какие предприятия превышают нормативы ПДВ; у какого предприятия просрочено действие разрешения на выброс; у какого предприятия задолженность по выплатам за выбросы в атмосферу.
Данные об инженерно-технических и транспортных коммуникациях должны храниться в ГИС ЕЭМ также в виде соответствующих карт и тематических баз данных. Следует отметить, что для инженерно-технических коммуникаций целесообразно иметь в базе данных и дополнительную графическую информацию в виде схем, чертежей и пояснительных документов, необходимых для их безопасной эксплуатации (ГИС предоставляет широкие возможности для работы с такой информацией).
В базах данных по транспортным магистралям должны содержаться такие экологические показатели, как интенсивность движения, спектр и объем вредных выбросов на единицу длины, виброа- кустические данные и др. Очевидно, что названные показатели изменяются на разных участках магистрали. Поэтому при картировании магистрали представляются в виде совокупности взаимосвязанных дуг, каждой из которых в базе данных ставятся в соответствие ее характеристики. В целом графические и тематические базы данных по транспортным магистралям должны обеспечивать выполнение запросов: какое количество заданного вредного вещества выбрасывается по всей длине транспортной магистрали, на какой магистрали выбрасывается максимальное количество определенного вредного вещества или всех веществ вместе; каково общее количество транспортных единиц, следующих по заданной магистрали или количество транспортных единиц заданного вида; какая магистраль (или участок какой магистрали) является наиболее нагруженной в транспортном отношении.
Изображение автомобильных магистралей на карте линиями различной ширины в зависимости от интенсивности движения транспорта по ним или объема выбросов загрязняющих веществ автомобилями на различных участках магистралей упрощает анализ транспортной ситуации, а одновременное использование базы данных позволяет получить любую интересующую пользователя информацию.
Дополнительные возможности для анализа экологической ситуации предоставляют оверлейные операции по наложению слоев информации в ГИС. Так, одновременный вывбд на экран полей концентрации оксида углерода, построенных по результатам ее измерений, и выбросов этого загрязнителя вдоль транспортных магистралей позволяет сделать вывод об источнике экологической опасности и принять соответствующие меры по ее устранению
Кроме распространенных баз данных в системе информационного обеспечения ЕЭМ особое значение имеет блок моделирования распределения полей концентрации загрязняющих веществ на основе общих показателей работы промышленных объектов или других источников загрязнения и степени их воздействия на ОС. Такие расчеты необходимы при анализе неблагополучной экологической ситуации в регионе для выявления ее виновников (вместе с анализом данных прямых измерений или вместо них, когда их получение не представляется возможным) или при прогнозировании экологической обстановки при вводе в действие или реконструкции тех или иных источников антропогенного воздействия на окружающую среду и определении размера затрат на уменьшение количества вредных выбросов в окружающую среду. Точность моделирования текущей ситуации в этом случае, как правило, невелика, но достаточна для выявления очагов загрязнения и выработки адекватного управляющего воздействия на технологическом и экономическом уровнях. В настоящее время существует ряд методик и самостоятельных программных средств (не входящих в состав ГИС), позволяющих определять поля концентраций загрязняющих веществ по результатам решения уравнений, описывающих с той или иной сте

пенью приближения рассеяние примесей в атмосфере или водной среде. В качестве нормативной для моделирования процессов в атмосфере утверждена методика ОНД-86.
Широкие интеграционные возможности ГИС позволяют использовать в качестве источников информации внешние специализированные расчетные модули и программные средства Поэтому их включение в состав ГИС ЕЭМ не вызывает особенных трудностей.
Таким образом, ГИС ЕЭМ позволяет эффективно реализовать комплексный подход к решению задач обеспечения экологической безопасности региона и создает единое информационное пространство для служб управления регионом.
ЛИТЕРАТУРА Цветков В Я Геоинформационные системы и технологии М Финансы и статистика, 1998 Бигаевский Л М, Вахромеева Л А Картографические проекции М Недра, 1992 Коновалова Н В, Капралов Е Г Введение в ГИС Петрозаводск Изд-во Петрозаводского университета, 1995 Разработка ГИС мониторинга лесных пожаров России иа основе ARC View CIS 30 и глобальной сети Internet / С А Барталев, А И Беляев, Д В Ершов и др / / ARC REVIEW (современные геоинформационные технологии) 1998 № 1 Озеров Ю, Сясин В ARC /INFO и ARC View в МЧС России // ARC REVIEW (современные геоинформационные технологии) 1997 № 2 Матросов А С Информационные технологии в системе управления отходами Учеб пособие М УРАО, 1999

Что такое ГИС?ГИС (Геоинформационная система) - система
сбора, хранения, анализа и графической
визуализации пространственных(географических)
данных и связанной с ними информацией о
необходимых объектах. В более узком смысле -
ГИС как инструмент (программный продукт),
позволяющий пользователям искать, анализировать
и редактировать цифровые карты, а также
дополнительную информацию об объектах,
например высоту здания, адрес, количество
жильцов.

История ГИС

Хотя геоинформационные системы явление
относительно новое, его историю можно разделить
на четыре основных этапа:

Этапы развития ГИС

1950е –
1970е гг.
Начальный период
Запуск первого искусственного спутника Земли
Появление электронных вычислительных машин
(ЭВМ) в 50-х годах.
Появление цифрователей, плоттеров,
графических дисплеев и других периферийных
устройств в 60-х.
Создание программных алгоритмов и процедур
графического отображения информации на
дисплеях и с помощью плоттеров.
Создание формальных методов
пространственного анализа.
Создание программных средств управления
базами данных.

Этапы развития ГИС

1970е –
1980е гг.
Период государственных инициатив
Государственная поддержка ГИС
стимулировала развитие
экспериментальных работ в области ГИС,
основанных на использовании баз
данных по уличным сетям:
Автоматизированные системы
навигации.
Системы вывоза городских отходов и
мусора.
Движение транспортных средств в
чрезвычайных ситуациях и т. д.

Этапы развития ГИС

1980е –
настоящее
время
Период коммерческого развития
Широкий рынок разнообразных программных
средств, развитие настольных ГИС,
расширение области их применения за счет
интеграции с базами непространственных
данных, появление сетевых приложений,
появление значительного числа
непрофессиональных пользователей, системы,
поддерживающие индивидуальные наборы
данных на отдельных компьютерах, открывают
путь системам, поддерживающим
корпоративные и распределенные базы
геоданных.

Этапы развития ГИС

1980е –
настоящее
время
Пользовательский период
Повышенная конкуренция среди коммерческих
производителей геоинформационных технологий услуг
дает преимущества пользователям ГИС, доступность и
«открытость» программных средств позволяет
использовать и даже модифицировать программы,
появление пользовательских «клубов»,
телеконференций, территориально разобщенных, но
связанных единой тематикой пользовательских групп,
возросшая потребность в геоданных, начало
формирования мировой геоинформационной
инфраструктуры. Морфометрический анализ рельефа на
основе ГИС-технологий новое направление в этой
области

Разделение ГИС

1)По территориальному охвату:
- Глобальные (планетарные) ГИС;
- Субконтинетальные ГИС;
- Национальные ГИС;
- Региональные ГИС;
- Субрегиональные ГИС;
- Локальные(местные) ГИС;

2)По предметной области
информационного моделирования:
- Городские ГИС;
- Муниципальные ГИС(МГИС);
- Природоохранные ГИС;

Классификация ГИС - ресурсов

Пользовательские ГИС (ArcGIS, Mapinfo, QGIS, gvSIG)
Пользовательские ГИС интегрированные с
виртуальными глобусами(расширение для ArcGIS
разработанное Brian Flood и позволяющее
интегрировать его с Virtual Earth
Виртуальные глобусы (Google Maps, Google Earth,
Virtual Earth, ArcGIS Explorer)
Картографические веб-сервера (MapServer, GeoServer,
OpenLayers и др.)

Примеры ГИС-ресурсов

Сферы приложения ГИС
- Экология и природопользование
- Земельный кадастр и землеустройство
- Управление городским хозяйством
- Региональное планирование
- Демография и исследование трудовых
ресурсов
- Управление дорожным движением
- Оперативное управление и планирование в
чрезвычайных ситуациях
- Социология и политология

Примеры ГИС – ресурсов

ГИС в экологии и природопользовании
- Состояние воздуха

- Расположение водных объектов на территории г. Москвы

- Состояние подземных вод

- Экологическая карта биоразнообразия г. Москвы: расселение
пресмыкающихся

ArcInfo (ESRI, США) (векторная топологическая модель)
ArcView (ESRI , США) (векторная нетопологическая
модель)
ERDAS Imagine (ERDAS, Inc. , США) (растровая модель)
MapInfo Profiessional (MapInfo , США) (векторная
нетопологическая модель)
MicroStation (Bentley System, Inc. , США) (3D)
ER Mapper (ER Mapping , Австралия) (растровая модель)
WinGis (Progis, Австрия) (векторная нетопологическая
модель)

AutoCAD Map (Autodesk, Inc. США)
AutoCAD Land Development Desktop
(землеустройство и землепользование)
Autodesk Civil Design (гражданское строительство)
Autodesk Survey (обработка геодезических данных)
Autodesk Map Guide (Web)

Рассматривая город как целостную систему, можно выделить факторы,
влияющие на экологическую безопасность населения: это загрязнение
атмосферы, почвы, водоемов предприятиями и транспортом, низкое качество
питьевой воды, несоответствие продуктов питания необходимым нормам.
Однако если для потребления питьевой воды и продуктов питания все же
существует контроль и управление качеством, то состояние окружающей
среды в современных городах продолжает ухудшаться из-за огромного
количества техногенной нагрузки.

ЭкоГИС

Это компонент ЭПК РОСА,
реализующий возможности
экологической геоинформационной
системы (ГИС). ЭкоГИС объединяет
мощный графический модуль, базу
данных и специальные средства
автоматизации проектирования.
Экологическая ГИС позволяет
использовать современные
инструменты для работы с картами,
планами, схемами, что существенно
облегчает и ускоряет процесс
проектирования как для крупных,
так и для небольших организаций.

ЭПК РОСА - графический модуль - карта-схема и проектные
данные

Фрагмент карты города - топооснова для построения экологической
карты

Сканированная карта-схема предприятия с привязкой по координатам

Векторная карта-схема предприятия после оцифровки

СИСТЕМА МЕДИКО-ЭКОЛОГИЧЕСКОГО МОНИТОРИНГА ОС
«МЭМОС» на базе геоинформационных технологий (ГИС).
Цель проекта: на основе
постоянно собираемой
информации о факторах среды и
здоровья, разработка и внедрение
комплексной системы
представления, анализа и прогноза
данных окружающей среды и
здоровья населения. Цель
реализуется посредством решения
нижеперечисленных задач.

Задачи МЭМОС:
формирование экологического и социально-гигиенического мониторинга
(организация сбора и хранения данных);
обоснование выбора ведущих (определяющих) факторов влияния на здоровье
населения тех или иных территорий;
прогнозирование во времени и в пространстве состояния окружающей среды;
прогнозирование во времени и в пространстве состояния здоровья населения на
перспективу;
расчет риска здоровью населения от ведущих факторов воздействия среды;
построение организационно-методической и правовой систем управления
здоровьем населения;
формирование экономических механизмов поддержания устойчивого развития
региона на основе медико-экологического благополучия
представление лицам, принимающим решения, результатов мониторинга через
веб-интерфейсы в Интернет

Система МЭМОС имеет ряд существенных преимуществ. Она дает
возможность лицам, принимающим решения:
оценить величину затрат на улучшение экологической обстановки вокруг
промышленного объекта;
оценить величину затрат на здравоохранение, связанных с отрицательным
воздействием на здоровье конкретного фактора окружающей среды;
выполнить прогноз государственных затрат на здравоохранение, связанных с
воздействием одного или нескольких факторов окружающей среды;
обосновать материальный иск граждан на ущерб здоровью, связанный с вредным
воздействием факторов среды обитания;
в рамках существующей правовой системы создать возможности экономической
защиты граждан в связи с влиянием окружающей среды.

Заключение

ГИС-технологии – это не просто
компьютерная база данных. Это огромные
возможности для анализа, планирования и
регулярного обновления информации. ГИСтехнологии сегодня находят применение
практически во всех сферах жизни, и это
помогает действительно эффективно решать
многие задачи. В частности задачи свзяанные
с экологической безопасностью в городской
среде.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Подобные документы

    История создания географических информационных систем, их классификация и функции. Сущность геохимической оценки техногенных аномалий. Применение геоинформационной системы ArcView 9 для оценки загрязнения тяжелыми металлами атмосферного воздуха г. Ялты.

    дипломная работа , добавлен 19.12.2012

    Информационное обеспечение экологических исследований. Структура и особенности экспертной системы. Преимущества геоинформационных систем. Модели в "математической экологии". Системы получения данных. Объединение различных информационных технологий.

    реферат , добавлен 11.12.2014

    Особенности экологии района: основные проблемы Челябинской области в сфере экологии, влияние промышленных предприятий на экологию, пути и методы решения экологических проблем. Усовершенствование технологий по очистке природной среды от отходов.

    доклад , добавлен 15.07.2008

    Основные виды хроматографии. Применение хроматографических методов в экологическом мониторинге. Применение хроматографии в анализе объектов окружающей среды. Современное аппаратурное оформление. Методы проявления хроматограмм и работа хроматографа.

    курсовая работа , добавлен 08.01.2010

    Использование геоинформационных систем для создания карт основных параметров окружающей среды в нефтегазовой отрасли с целью выявления масштабов и темпов деградации флоры и фауны. Базовые основы системы мониторинга и комплексной оценки природной среды.

    курсовая работа , добавлен 27.02.2011

    Понятие мониторинга загрязнения вредными веществами, его цели и задачи, классификация. Институты регионального мониторинга состояния экологии. Построение системы регионального наблюдения в Республике Беларусь. Некоторые результаты стационарных наблюдений.

    реферат , добавлен 30.05.2015

    презентация , добавлен 27.11.2015

    Общая характеристика загрязнений естественного и антропогенного происхождения, физические, химические и биологические загрязнения природной среды. Последствия загрязнения и неблагоприятное изменение нашего окружения, контроль и ликвидация отходов.

    В ходе экологического наблюдения (мониторинга) осуществляют сбор и совместную обработку данных, относящихся к различным природным средам, моделирование и анализ экологических процессов и тенденций их развития, а также использование данных при принятии решений по управлению качеством окружающей среды. Результат экологического исследования представляет оперативные данные трех типов: констатирующие (измеренные параметры состояния экологической обстановки в момент обследования), оценочные (результаты обработки измерений и получение на этой основе оценок экологической ситуации), прогнозные (прогнозирующие развитие обстановки на заданный период времени). Совокупность перечисленных типов данных составляет основу экологического мониторинга. Особенностью представления данных в системах экологического мониторинга является то, что на экологических картах в большей степени представлены ареальные геообъекты, чем линейные.

    В экологических ГИС применяются в первую очередь динамические модели, в которых большую роль играют технологии создания электронных карт.

    Относительно цифрового моделирования принципиальным следует считать использование цифровых моделей типа цифровая модель явления, поле и т.п.

    На уровне сбора информации наряду с топографическими характеристиками дополнительно определяются параметры, характеризующие экологическую обстановку. Это увеличивает объем атрибутивных данных в экологических ГИС по сравнению с типовыми ГИС; соответственно возрастает роль семантического моделирования.

    На уровне моделирования используют специальные методы расчета параметров, характеризующих экологическое состояние среды и определяющих форму представления цифровых карт.

    На уровне представления при экологических исследованиях осуществляют выдачу не одной, а серии карт, особенно при прогнозировании явлений. В некоторых случаях карты выдаются с применением методов динамической визуализации, что можно наблюдать при метеопрогнозах, показываемых по телевидению.

    Например, объектами мониторинга города являются атмосферный воздух, поверхностные и подземные воды, почва, зеленые насаждения, радиационная обстановка, среда обитания и состояние здоровья населения.

    Большое число организаций (федеральных, муниципальных, ведомственных) занимаются независимо друг от друга сбором данных о состоянии параметров объектов окружающей среды. Производится контроль состава атмосферного воздуха, количества выбросов промышленных предприятий и автотранспорта, качества поверхностных и подземных вод и т.д. Эти работы выполняют различные организации - от ГАИ до санэпидемстанций. Недостатками существующего порядка сбора экологических данных являются бессистемность, разрозненность, разобщенность городских природоохранных организаций и отсутствие комплексных оценок и прогнозов развития экологической обстановки.

    Главная задача городского экомониторинга - получение комплексной оценки экологической ситуации в городе на базе интеграции всех видов данных, поступающих от различных организаций. Интеграционной основой множества данных является карта. Следовательно, решение задач экомониторинга города неизбежно приводит к применению ГИС. Для этого объединяют существующие сети различных измерений и специализированные мониторинги природоохранных служб. Создание системы основано на внедрении современных средств контроля на базе единого информационного пространства.

    Геоинформационные системы являются оптимальным средством для представления и анализа пространственно-распределенных экологических данных, т.к. они могут обеспечить эффективное использование накапливаемых данных, комплексную их обработку и совершенные методы моделирования и представления. Структура такой системы может включать два уровня.

    Нижний уровень системы экомониторинга:

    § федеральные, городские, ведомственные подсистемы специализированных мониторингов (атмосферы, поверхностных вод, здоровья населения, радиологический мониторинг, мониторинг санитарной очистки территории города, недр и подземных вод, почв, зеленых насаждений, акустический и градостроительный мониторинг);

    § территориальные центры сбора и обработки данных.

    Эти подсистемы обеспечивают сбор полной и по возможности качественной информации о состоянии окружающей среды на всей территории города. В локальных центрах проводится также анализ информации и ее отбор для передачи на верхний уровень. Территориальные центры обеспечивают сбор информации по источникам антропогенного загрязнения на территории административных округов.

    Верхний уровень системы экомониторинга составляет информационно-аналитический центр, в задачи которого входят:

    § оперативная оценка экологической ситуации в городе;

    § расчет интегральных оценок экологической ситуации;

    § прогноз развития экологической обстановки;

    § подготовка проектов управляющих воздействий и оценка последствий принимаемых решений.

    Интеграция данных в единую систему происходит двумя путями:

    1. на основе конвертирования форматов данных в единый для всей системы формат;

    2. на основе выбора единого программного обеспечения ГИС.

    Кроме ведения баз данных возможно моделирование и получение тематических карт. В системе может производиться расчет платежей за использование природных ресурсов, расчет полей концентрации загрязняющих веществ в атмосфере, воде, почве.

    Система экологического мониторинга предусматривает обмен данными между его участниками, поэтому одним из главных требований, предъявляемых к программному обеспечению всех подсистем, является возможность конвертирования файлов данных в стандартные форматы (DBF для файлов баз данных и DXF для графических файлов).

    Экологические проблемы часто требуют незамедлительных и адекватных действий, эффективность которых напрямую связана с оперативностью обработки и представления информации. При комплексном подходе, характерном для экологии, обычно приходится опираться на обобщающие характеристики окружающей среды, вследствие чего, объемы даже минимально достаточной исходной информации, несомненно, должны быть большими. В противном случае обоснованность действий и решений вряд ли может быть достигнута. Однако простого накопления данных тоже, к сожалению, недостаточно. Эти данные должны быть легко доступны, систематизированы в соответствии с потребностями. Хорошо, если есть возможность связать разнородные данные друг с другом, сравнить, проанализировать, просто просмотреть их в удобном и наглядном виде, например, создав на их основе необходимую таблицу, схему, чертеж, карту, диаграмму. Группировка данных в нужном виде, их надлежащее изображение, сопоставление и анализ целиком зависят от квалификации и эрудированности исследователя, выбранного им подхода интерпретации накопленной информации. На этапе обработки и анализа собранных данных существенное, но отнюдь не первое, место занимает техническая оснащенность исследователя, включающая подходящие для решения поставленной задачи аппаратные средства и программное обеспечение. В качестве последнего во всем мире все чаще применяется современная мощная технология географических информационных систем.

    ГИС имеет определенные характеристики, которые с полным правом позволяют считать эту технологию основной для целей обработки и управления информацией. Средства ГИС намного превосходят возможности обычных картографических систем, хотя естественно, включают все основные функции получения высококачественных карт и планов. В самой концепции ГИС заложены всесторонние возможности сбора, интеграции и анализа любых распределенных в пространстве или привязанных к конкретному месту данных. Если необходимо визуализировать имеющуюся информацию в виде карты, графика или диаграммы, создать, дополнить или видоизменить базу данных, интегрировать ее с другими базами - единственно верным путем будет обращение к ГИС. В традиционном представлении возможные пределы интеграции разнородных данных искусственно ограничиваются. Близким к идеалу считают, например, возможность создания карты урожайности полей путем объединения данных о почвах, климате и растительности. ГИС позволяет пойти значительно дальше. К вышеприведенному набору данных можно добавить демографическую информацию, сведения о земельной собственности, благосостоянии и доходах населения, объемах капитальных вложений и инвестиций, зонировании территории, состоянии хлебного рынка и т.д. В результате появляется возможность напрямую определить эффективность запланированных или проводящихся мероприятий по сохранению природы, их влияние на жизнь людей и экономику сельского хозяйства. Можно пойти еще дальше и, добавив данные о распространении заболеваний и эпидемий, установить, есть ли взаимосвязь между темпами деградации природы и здоровьем людей, определить возможность возникновения и распространения новых заболеваний. В конечном счете, удается достаточно точно оценить все социально-экономические аспекты любого процесса, например сокращения площади лесных угодий или деградации почв.